- 吴恩达机器学习全课程笔记第二篇
亿维数组
MachineLearning机器学习笔记人工智能学习
目录前言P31-P33logistics(逻辑)回归决策边界P34-P36逻辑回归的代价函数梯度下降的实现P37-P41过拟合问题正则化代价函数正则化线性回归正则化logistics回归前言这是吴恩达机器学习笔记的第二篇,第一篇笔记请见:吴恩达机器学习全课程笔记第一篇完整的课程链接如下:吴恩达机器学习教程(bilibili)推荐网站:scikit-learn中文社区吴恩达机器学习学习资料(gith
- 机器学习教程之5-神经网络:表述(Neural Networks:Representation)
豆-Metcalf
机器学习Python机器学习的sklearn实现神经网络机器学习
1.非线性假设假设我们希望训练一个模型来识别视觉对象(例如识别一张图片上是否是一辆汽车),我们怎样才能这么做呢?一种方法是我们利用很多汽车的图片和很多非汽车的图片,然后利用这些图片上一个个像素的值(饱和度或亮度)来作为特征。显然用线性回归或逻辑回归都是不可取的,因为将一幅图上的所有点作为特征,特征数太多,计算量太大。无论是线性回归还是逻辑回归都有这样一个缺点,即:当特征太多时,计算的负荷会非常大。
- 零基础“机器学习“自学笔记|Note8:正则化
木舟笔记
写在前面这个系列为我在自学【机器学习】时的个人笔记。学习过程中可能会有较多的纰漏,希望各位读者不吝赐教。本系列以吴恩达老师的【“机器学习”课程】为纲,辅以黄海广老师的【斯坦福大学2014机器学习教程个人笔记(V5.51)】,中间会穿插相关数理知识。正则化8.1过拟合如图,对于之前的房价问题进行了不同的拟合。第一个模型是一个线性模型,欠拟合,不能很好地适应我们的训练集;第三个模型使用更高阶的多项式进
- 零基础"机器学习"自学笔记|Note3:梯度下降法
木舟笔记
写在前面这个系列为我在自学【机器学习】时的个人笔记。因为本人为医学相关专业,故学习过程中可能会有较多的纰漏,希望各位读者不吝赐教。本系列以吴恩达老师的【“机器学习”课程】为纲,辅以黄海广老师的【斯坦福大学2014机器学习教程个人笔记(V5.51)】,中间会穿插相关数理知识。该系列笔记为实时同步更新,故与本人的学习进度息息相关,希望同在学习相关知识的朋友能多多督促,共同进步。03梯度下降3.1梯度下
- 使用 Python 和 scikit-learn 生成机器学习模型
AI-智能
python机器学习scikit-learn人工智能深度学习
获得有关如何从头到尾创建和运行分类模型的实践经验在此数据科学和机器学习教程中,获取有关如何从头到尾创建和运行分类模型的动手示例。本教程涵盖以下步骤:数据探索数据预处理拆分数据以进行训练和测试准备分类模型使用流水线组装所有步骤训练模型对模型运行预测评估和可视化模型性能建立本教程包括一个用Python编写的JupyterNotebook。您可以通过IBMCloud帐户使用WatsonStudio在IB
- 你真的理解One-Hot编码吗?原理解释
训灼说
NLP之美自然语言处理机器学习深度学习神经网络数据挖掘
在机器学习中为什么要进行One-Hot编码?入门机器学习应用,尤其是需要对实际数据进行处理时,是很困难的。一般来说,机器学习教程会推荐你或要求你,在开始拟合模型之前,先以特定的方式准备好数据。其中,一个简单的例子就是对类别数据(Categoricaldata)进行One-Hot编码(又称独热编码)。为什么One-Hot编码是必要的?为什么你不能直接使用数据来拟合模型?在本文中,你将得到上述重要问题
- 使用 Python 和 scikit-learn 生成和测试第一个机器学习模型
人工智能MOS
python机器学习scikit-learn开发语言人工智能深度学习
获得有关如何从头到尾创建和运行分类模型的实践经验在此数据科学和机器学习教程中,获取有关如何从头到尾创建和运行分类模型的动手示例。本教程涵盖以下步骤:数据探索数据预处理拆分数据以进行训练和测试准备分类模型使用流水线组装所有步骤训练模型对模型运行预测评估和可视化模型性能建立本教程包括一个用Python编写的JupyterNotebook。您可以通过IBMCloud帐户使用WatsonStudio在IB
- 单变量线性回归的机器学习代码
ShawnWeasley
AI线性回归机器学习算法
本文为学习吴恩达版本机器学习教程的代码整理,使用的数据集为https://github.com/fengdu78/Coursera-ML-AndrewNg-Notes/blob/f2757f85b99a2b800f4c2e3e9ea967d9e17dfbd8/code/ex1-linear%20regression/ex1data1.txt将数据集和py代码放到同一目录中,使用Spyder打开运行
- IBM Qiskit量子机器学习教程翻译:第五章 监督学习
溴锑锑跃迁
Qiskit学习机器学习学习人工智能
监督学习监督学习是一种学习函数的机器学习方式,学习得到的函数会基于样例中的输入-输出配对方式,将输入数据映射到输出数据。它从由一组训练样例组成的标记训练数据中推断出一个函数,并使用一组测试样例计算其性能。我们可以把监督学习任务分为两种类型:分类(classification)和回归(regression)。分类任务要求我们将数据分配到特定的类别之下。例如,给定带标签的椅子或桌子的图片,我们需要在学
- IBM Qiskit量子机器学习教程翻译:第六章 变分分类
溴锑锑跃迁
机器学习分类量子计算
变分分类(Variationalclassification)在本章,我们会介绍变分算法,随后描述并实现变分量子分类器,讨论变分的训练方法。变分算法2014年引入了变分算法,文献1中的变分特征求解器和文献2中的量子近似优化算法。变分算法是一种短期算法,可以在当前的量子计算机上与经典计算机协同执行。利用参数化量子电路,即假设(ansatz),U(θ)U(\theta)U(θ)制备状态∣ψ(θ)⟩=U
- RNN 网络结构及训练过程简介
星海浮生
机器学习rnn人工智能深度学习
本文通过整理李宏毅老师的机器学习教程的内容,简要介绍RNN(recurrentneuralnetwork)的网络结构及训练过程。RNN网络结构,李宏毅RNNRNN的特点在于存储功能,即可以记忆前面时刻的信息。最简单的RNN结构如下:当然,网络结构可以很深,多少层都可以:如果存储的是隐藏层(hiddenlayer)的值,则称为ElmanNetwork;如果存储的是输出值,则称为JordanNetwo
- Python 手写机器学习最简单的 kNN 算法
Python进阶者
本文3000字,预计阅读时间10分钟,建议收藏摘要:从零开始学习机器学习最简单的kNN算法。今天开始,我打算写写机器学习教程。说实话,相比爬虫,掌握机器学习更实用竞争力也更强些。目前网上大多这类教程对新手都不友好,要么直接调用Sklearn包,要么满篇抽象枯燥的算法公式文字,看这些教程你很难入门,而真正适合入门的手写Python代码教程寥寥无几。最近看了慕课网bobo老师的机器学习课程后,大呼过瘾
- “Python+高光谱遥感数据处理与机器学习教程
慢腾腾的小蜗牛
生态遥感人工智能python机器学习高光谱深度学习编程数据处理遥感
详情点击链接:“Python+高光谱遥感数据处理与机器学习教程第一:高光谱一:高光谱遥感01)高光谱遥感02)光的波长03)光谱分辨率04)高光谱遥感的历史和发展二:高光谱传感器与数据获取01)高光谱遥感成像原理与传感器02)卫星高光谱数据获取03)机载(无人机)高光谱数据获取04)地面光谱数据获取05)构建光谱库三:高光谱数据预处理01)图像的物理意义02)数字量化图像(DN值)03)辐射亮度数
- 吴恩达机器学习----支持向量机
huapusi
吴恩达机器学习笔记吴恩达支持向量机核函数机器学习
吴恩达机器学习教程学习笔记(10/16)吴恩达教授(AndrewNg)的机器学习可以说是一门非常重视ML理论基础的课程,做做一些简单的笔记加上个人的理解。本笔记根据吴恩达的课程顺序,以每章内容作为节点进行记录。(共18章,其中第3章“线性代数回顾”与第5章“Octava教程”的笔记就不总结了)第十二章支持向量机(SupportVectorMachine)1、优化目标与逻辑回归和神经网络相比,支持向
- 吴恩达机器学习----神经网络:学习
huapusi
吴恩达机器学习笔记机器学习吴恩达神经网络
吴恩达机器学习教程学习笔记(7/16)吴恩达教授(AndrewNg)的机器学习可以说是一门非常重视ML理论基础的课程,做做一些简单的笔记加上个人的理解。本笔记根据吴恩达的课程顺序,以每章内容作为节点进行记录。(共18章,其中第3章“线性代数回顾”与第5章“Octava教程”的笔记就不总结了)第九章神经网络:学习(NeuralNetwork:Learning)1、代价函数假设神经网络的训练样本有m个
- 吴恩达机器学习----神经网络:表述
huapusi
吴恩达机器学习笔记神经网络机器学习吴恩达
吴恩达机器学习教程学习笔记(6/16)吴恩达教授(AndrewNg)的机器学习可以说是一门非常重视ML理论基础的课程,做做一些简单的笔记加上个人的理解。本笔记根据吴恩达的课程顺序,以每章内容作为节点进行记录。(共18章,其中第3章“线性代数回顾”与第5章“Octava教程”的笔记就不总结了)第八章神经网络:表述(NeuralNetworks:Representation)1、非线性假设我们之前学的
- 吴恩达机器学习----正则化
huapusi
吴恩达机器学习笔记人工智能机器学习吴恩达正则化
吴恩达机器学习教程学习笔记(5/16)吴恩达教授(AndrewNg)的机器学习可以说是一门非常重视ML理论基础的课程,做做一些简单的笔记加上个人的理解。本笔记根据吴恩达的课程顺序,以每章内容作为节点进行记录。(共18章,其中第3章“线性代数回顾”与第5章“Octava教程”的笔记就不总结了)第七章正则化(Regularization)1、过拟合的问题如果我们有非常多的特征,我们通过学习得到的假设可
- IBM Qiskit量子机器学习教程翻译:第四章 训练参数化量子电路
溴锑锑跃迁
机器学习人工智能
训练参数化量子电路在本节中,我们将仔细研究如何使用基于梯度的方法训练基于电路的模型。我们将看看这些模型的限制,以及我们如何克服它们。简介与经典模型一样,我们可以训练参数化量子电路模型来执行数据驱动的任务。从数据中学习任意函数的任务在数学上表示为代价或者损失函数(也称为目标函数)f(θ⃗)f(\vec\theta)f(θ)的最小化,相对于参数向量θ⃗\vec\thetaθ。通常,在训练参数化量子电路
- IBM Qiskit量子机器学习教程翻译:第二章 参数化电路
溴锑锑跃迁
机器学习量子计算人工智能
参数化电路(Parameterizedquantumcircuits)在本节中,我们介绍了参数化量子电路,然后描述了它们的特性并实现了一些用于量子机器学习的示例。介绍参数化量子电路,其中的门是通过可调参数定义的,是近期量子机器学习算法的基本组成部分。在文献中,根据上下文,参数化量子电路也被称为参数化试态、变分形式或分析。下面是一个简单的参数化电路的例子,有两个参数化门,一个单量子位zzz旋转门,具
- IBM Qiskit量子机器学习教程翻译:第三章 数据编码
溴锑锑跃迁
机器学习人工智能量子力学量子计算python量子机器学习
数据编码在这一页中,我们将介绍量子机器学习的数据编码问题,然后描述和实现各种数据编码方法。介绍数据表示对于机器学习模型的成功至关重要。对于经典机器学习来说,问题是如何用数字表示数据,以便经典机器学习算法对数据进行最好的处理。对于量子机器学习来说,这个问题是类似的,但更基本:如何将数据表示并有效地输入到量子系统中,从而可以通过量子机器学习算法进行处理。这通常称为数据编码,但也称为数据嵌入或加载。这个
- IBM Qiskit量子机器学习速成(一)
溴锑锑跃迁
机器学习人工智能python神经网络
声明:本篇笔记基于IBMQiskit量子机器学习教程的第一节,中文版译文详见:https://blog.csdn.net/qq_33943772/article/details/129860346?spm=1001.2014.3001.5501概述首先导入关键的包fromqiskitimportQuantumCircuitfromqiskit.utilsimportalgorithm_global
- 反向传播法(backpropagation)的基本原理
星海浮生
机器学习算法
本文通过整理李宏毅老师的机器学习教程的内容,介绍神经网络中用于更新参数的反向传播法(backpropagation)的基本原理。反向传播backpropagation,李宏毅神经网络的结构:loss(损失)的计算:L(θ)=∑n=1NCn(θ)L(\theta)=\sum_{n=1}^{N}C^{n}(\theta)L(θ)=n=1∑NCn(θ)其中,上标nnn表示第nnn条数据。易知:网络参数的
- CNN 网络结构简介
星海浮生
机器学习cnn人工智能神经网络
本文通过整理李宏毅老师的机器学习教程的内容,介绍CNN(卷积神经网络)的网络结构。CNN网络结构,李宏毅CNN主要应用在图像识别(imageclassification,图像分类)领域。通常,输入的图片大小相同,如100×100100\times100100×100,输出的分类为one-hot形式:输入数据的格式为tensor(张量),维数为:宽度×\times×高度×\times×channel
- “Python+”集成技术高光谱遥感数据处理与机器学习教程
夏日恋雨
人工智能生态学遥感python机器学习深度学习数据处理高光谱遥感空间数据处理地质学
详情点击公众号链接:“Python+”集成技术高光谱遥感数据处理与机器学习教程第一:高光谱基础一:高光谱遥感基本概念01)高光谱遥感02)光的波长03)光谱分辨率04)高光谱遥感的历史和发展二:高光谱传感器与数据获取01)高光谱遥感成像原理与传感器02)卫星高光谱数据获取03)机载(无人机)高光谱数据获取04)地面光谱数据获取05)构建光谱库三:高光谱数据预处理01)图像的物理意义02)数字量化图
- Python 数据挖掘与机器学习教程
夏日恋雨
人工智能生态学遥感python数据挖掘机器学习人工智能开发语言
详情点击链接:Python数据挖掘与机器学习教程模块一:Python编程Python编程入门1、Python环境搭建(下载、安装与版本选择)。2、如何选择Python编辑器?(IDLE、Notepad++、PyCharm、Jupyter…)3、Python基础(数据类型和变量、字符串和编码、list和tuple、条件判断、循环、函数的定义与调用等)4、常见的错误与程序调试5、第三方模块的安装与使用
- Python高光谱遥感数据处理与机器学习教程
慢腾腾的小蜗牛
生态遥感人工智能python机器学习人工智能开发语言
详情点击链接:Python高光谱遥感数据处理与机器学习教程一,高光谱1.高光谱遥感二,高光谱传感器与数据获取1.高光谱传感器类型2.高光谱数据获取三,高光谱数据预处理1.高光谱图像2.辐射定标3.大气校正4.光谱平滑和重采样四,高光谱分析1.光谱特征提取2.降维技术(如PCA、MNF)3.高光谱分类、回归、目标检测4.混合像元分解方法五,高光谱应用1.环境监测(植被分类、水质评估)2.农业(作物产
- 零基础"机器学习"自学笔记|Note7:逻辑回归
木舟笔记
logic.jpeg写在前面这个系列为我在自学【机器学习】时的个人笔记。学习过程中可能会有较多的纰漏,希望各位读者不吝赐教。本系列以吴恩达老师的【“机器学习”课程】为纲,辅以黄海广老师的【斯坦福大学2014机器学习教程个人笔记(V5.51)】,中间会穿插相关数理知识。逻辑回归7.1分类问题逻辑回归(LogisticRegression)是一种用于解决二分类(0or1)问题的机器学习方法,用于估计某
- Python 数据挖掘与机器学习教程
夏日恋雨
人工智能python数据挖掘机器学习开发语言人工智能
详情点击链接:Python数据挖掘与机器学习一:Python编程Python编程入门1、Python环境搭建(下载、安装与版本选择)。2、如何选择Python编辑器?(IDLE、Notepad++、PyCharm、Jupyter…)3、Python基础(数据类型和变量、字符串和编码、list和tuple、条件判断、循环、函数的定义与调用等)4、常见的错误与程序调试5、第三方模块的安装与使用6、文件
- 【机器学习教程】五、支持向量机(Support Vector Machines)
晨星同行
《机器学习教程》本科毕设100例支持向量机机器学习人工智能
引言支持向量机(SupportVectorMachines,简称SVM)是一种强大且广泛应用于机器学习领域的监督学习算法。其独特的特点使得它在许多分类和回归任务中表现出色。SVM的原理基于统计学习理论和几何学的概念,并具有较好的理论基础和严格的数学推导。本文将深入介绍SVM的算法发展、重要论文、原理以及应用,并提供一个复杂的实战案例。算法发展与重要论文SVM的发展可以追溯到上世纪60年代,但直到上
- 【机器学习教程】二、逻辑回归:从概率到分类的利器
晨星同行
《机器学习教程》本科毕设100例机器学习逻辑回归分类
引言在机器学习领域中,逻辑回归(LogisticRegression)是一种经典的分类算法,被广泛应用于各种实际问题中。尽管名字中带有"回归"一词,但逻辑回归实际上是一种分类模型,它通过将输入数据映射到一个概率范围内来进行二分类或多分类任务。逻辑回归具有许多优点,如简单易懂、计算效率高以及对大规模数据集的可扩展性。本文将从逻辑回归算法的发展历程开始介绍,包括一些重要的论文和它们的详细内容。接着,将
- 如何用ruby来写hadoop的mapreduce并生成jar包
wudixiaotie
mapreduce
ruby来写hadoop的mapreduce,我用的方法是rubydoop。怎么配置环境呢:
1.安装rvm:
不说了 网上有
2.安装ruby:
由于我以前是做ruby的,所以习惯性的先安装了ruby,起码调试起来比jruby快多了。
3.安装jruby:
rvm install jruby然后等待安
- java编程思想 -- 访问控制权限
百合不是茶
java访问控制权限单例模式
访问权限是java中一个比较中要的知识点,它规定者什么方法可以访问,什么不可以访问
一:包访问权限;
自定义包:
package com.wj.control;
//包
public class Demo {
//定义一个无参的方法
public void DemoPackage(){
System.out.println("调用
- [生物与医学]请审慎食用小龙虾
comsci
生物
现在的餐馆里面出售的小龙虾,有一些是在野外捕捉的,这些小龙虾身体里面可能带有某些病毒和细菌,人食用以后可能会导致一些疾病,严重的甚至会死亡.....
所以,参加聚餐的时候,最好不要点小龙虾...就吃养殖的猪肉,牛肉,羊肉和鱼,等动物蛋白质
- org.apache.jasper.JasperException: Unable to compile class for JSP:
商人shang
maven2.2jdk1.8
环境: jdk1.8 maven tomcat7-maven-plugin 2.0
原因: tomcat7-maven-plugin 2.0 不知吃 jdk 1.8,换成 tomcat7-maven-plugin 2.2就行,即
<plugin>
- 你的垃圾你处理掉了吗?GC
oloz
GC
前序:本人菜鸟,此文研究学习来自网络,各位牛牛多指教
1.垃圾收集算法的核心思想
Java语言建立了垃圾收集机制,用以跟踪正在使用的对象和发现并回收不再使用(引用)的对象。该机制可以有效防范动态内存分配中可能发生的两个危险:因内存垃圾过多而引发的内存耗尽,以及不恰当的内存释放所造成的内存非法引用。
垃圾收集算法的核心思想是:对虚拟机可用内存空间,即堆空间中的对象进行识别
- shiro 和 SESSSION
杨白白
shiro
shiro 在web项目里默认使用的是web容器提供的session,也就是说shiro使用的session是web容器产生的,并不是自己产生的,在用于非web环境时可用其他来源代替。在web工程启动的时候它就和容器绑定在了一起,这是通过web.xml里面的shiroFilter实现的。通过session.getSession()方法会在浏览器cokkice产生JESSIONID,当关闭浏览器,此
- 移动互联网终端 淘宝客如何实现盈利
小桔子
移動客戶端淘客淘寶App
2012年淘宝联盟平台为站长和淘宝客带来的分成收入突破30亿元,同比增长100%。而来自移动端的分成达1亿元,其中美丽说、蘑菇街、果库、口袋购物等App运营商分成近5000万元。 可以看出,虽然目前阶段PC端对于淘客而言仍旧是盈利的大头,但移动端已经呈现出爆发之势。而且这个势头将随着智能终端(手机,平板)的加速普及而更加迅猛
- wordpress小工具制作
aichenglong
wordpress小工具
wordpress 使用侧边栏的小工具,很方便调整页面结构
小工具的制作过程
1 在自己的主题文件中新建一个文件夹(如widget),在文件夹中创建一个php(AWP_posts-category.php)
小工具是一个类,想侧边栏一样,还得使用代码注册,他才可以再后台使用,基本的代码一层不变
<?php
class AWP_Post_Category extends WP_Wi
- JS微信分享
AILIKES
js
// 所有功能必须包含在 WeixinApi.ready 中进行
WeixinApi.ready(function(Api) {
// 微信分享的数据
var wxData = {
&nb
- 封装探讨
百合不是茶
JAVA面向对象 封装
//封装 属性 方法 将某些东西包装在一起,通过创建对象或使用静态的方法来调用,称为封装;封装其实就是有选择性地公开或隐藏某些信息,它解决了数据的安全性问题,增加代码的可读性和可维护性
在 Aname类中申明三个属性,将其封装在一个类中:通过对象来调用
例如 1:
//属性 将其设为私有
姓名 name 可以公开
- jquery radio/checkbox change事件不能触发的问题
bijian1013
JavaScriptjquery
我想让radio来控制当前我选择的是机动车还是特种车,如下所示:
<html>
<head>
<script src="http://ajax.googleapis.com/ajax/libs/jquery/1.7.1/jquery.min.js" type="text/javascript"><
- AngularJS中安全性措施
bijian1013
JavaScriptAngularJS安全性XSRFJSON漏洞
在使用web应用中,安全性是应该首要考虑的一个问题。AngularJS提供了一些辅助机制,用来防护来自两个常见攻击方向的网络攻击。
一.JSON漏洞
当使用一个GET请求获取JSON数组信息的时候(尤其是当这一信息非常敏感,
- [Maven学习笔记九]Maven发布web项目
bit1129
maven
基于Maven的web项目的标准项目结构
user-project
user-core
user-service
user-web
src
- 【Hive七】Hive用户自定义聚合函数(UDAF)
bit1129
hive
用户自定义聚合函数,用户提供的多个入参通过聚合计算(求和、求最大值、求最小值)得到一个聚合计算结果的函数。
问题:UDF也可以提供输入多个参数然后输出一个结果的运算,比如加法运算add(3,5),add这个UDF需要实现UDF的evaluate方法,那么UDF和UDAF的实质分别究竟是什么?
Double evaluate(Double a, Double b)
- 通过 nginx-lua 给 Nginx 增加 OAuth 支持
ronin47
前言:我们使用Nginx的Lua中间件建立了OAuth2认证和授权层。如果你也有此打算,阅读下面的文档,实现自动化并获得收益。SeatGeek 在过去几年中取得了发展,我们已经积累了不少针对各种任务的不同管理接口。我们通常为新的展示需求创建新模块,比如我们自己的博客、图表等。我们还定期开发内部工具来处理诸如部署、可视化操作及事件处理等事务。在处理这些事务中,我们使用了几个不同的接口来认证:
&n
- 利用tomcat-redis-session-manager做session同步时自定义类对象属性保存不上的解决方法
bsr1983
session
在利用tomcat-redis-session-manager做session同步时,遇到了在session保存一个自定义对象时,修改该对象中的某个属性,session未进行序列化,属性没有被存储到redis中。 在 tomcat-redis-session-manager的github上有如下说明: Session Change Tracking
As noted in the &qu
- 《代码大全》表驱动法-Table Driven Approach-1
bylijinnan
java算法
关于Table Driven Approach的一篇非常好的文章:
http://www.codeproject.com/Articles/42732/Table-driven-Approach
package com.ljn.base;
import java.util.Random;
public class TableDriven {
public
- Sybase封锁原理
chicony
Sybase
昨天在操作Sybase IQ12.7时意外操作造成了数据库表锁定,不能删除被锁定表数据也不能往其中写入数据。由于着急往该表抽入数据,因此立马着手解决该表的解锁问题。 无奈此前没有接触过Sybase IQ12.7这套数据库产品,加之当时已属于下班时间无法求助于支持人员支持,因此只有借助搜索引擎强大的
- java异常处理机制
CrazyMizzz
java
java异常关键字有以下几个,分别为 try catch final throw throws
他们的定义分别为
try: Opening exception-handling statement.
catch: Captures the exception.
finally: Runs its code before terminating
- hive 数据插入DML语法汇总
daizj
hiveDML数据插入
Hive的数据插入DML语法汇总1、Loading files into tables语法:1) LOAD DATA [LOCAL] INPATH 'filepath' [OVERWRITE] INTO TABLE tablename [PARTITION (partcol1=val1, partcol2=val2 ...)]解释:1)、上面命令执行环境为hive客户端环境下: hive>l
- 工厂设计模式
dcj3sjt126com
设计模式
使用设计模式是促进最佳实践和良好设计的好办法。设计模式可以提供针对常见的编程问题的灵活的解决方案。 工厂模式
工厂模式(Factory)允许你在代码执行时实例化对象。它之所以被称为工厂模式是因为它负责“生产”对象。工厂方法的参数是你要生成的对象对应的类名称。
Example #1 调用工厂方法(带参数)
<?phpclass Example{
- mysql字符串查找函数
dcj3sjt126com
mysql
FIND_IN_SET(str,strlist)
假如字符串str 在由N 子链组成的字符串列表strlist 中,则返回值的范围在1到 N 之间。一个字符串列表就是一个由一些被‘,’符号分开的自链组成的字符串。如果第一个参数是一个常数字符串,而第二个是type SET列,则 FIND_IN_SET() 函数被优化,使用比特计算。如果str不在strlist 或st
- jvm内存管理
easterfly
jvm
一、JVM堆内存的划分
分为年轻代和年老代。年轻代又分为三部分:一个eden,两个survivor。
工作过程是这样的:e区空间满了后,执行minor gc,存活下来的对象放入s0, 对s0仍会进行minor gc,存活下来的的对象放入s1中,对s1同样执行minor gc,依旧存活的对象就放入年老代中;
年老代满了之后会执行major gc,这个是stop the word模式,执行
- CentOS-6.3安装配置JDK-8
gengzg
centos
JAVA_HOME=/usr/java/jdk1.8.0_45
JRE_HOME=/usr/java/jdk1.8.0_45/jre
PATH=$PATH:$JAVA_HOME/bin:$JRE_HOME/bin
CLASSPATH=.:$JAVA_HOME/lib/dt.jar:$JAVA_HOME/lib/tools.jar:$JRE_HOME/lib
export JAVA_HOME
- 【转】关于web路径的获取方法
huangyc1210
Web路径
假定你的web application 名称为news,你在浏览器中输入请求路径: http://localhost:8080/news/main/list.jsp 则执行下面向行代码后打印出如下结果: 1、 System.out.println(request.getContextPath()); //可返回站点的根路径。也就是项
- php里获取第一个中文首字母并排序
远去的渡口
数据结构PHP
很久没来更新博客了,还是觉得工作需要多总结的好。今天来更新一个自己认为比较有成就的问题吧。 最近在做储值结算,需求里结算首页需要按门店的首字母A-Z排序。我的数据结构原本是这样的:
Array
(
[0] => Array
(
[sid] => 2885842
[recetcstoredpay] =&g
- java内部类
hm4123660
java内部类匿名内部类成员内部类方法内部类
在Java中,可以将一个类定义在另一个类里面或者一个方法里面,这样的类称为内部类。内部类仍然是一个独立的类,在编译之后内部类会被编译成独立的.class文件,但是前面冠以外部类的类名和$符号。内部类可以间接解决多继承问题,可以使用内部类继承一个类,外部类继承一个类,实现多继承。
&nb
- Caused by: java.lang.IncompatibleClassChangeError: class org.hibernate.cfg.Exten
zhb8015
maven pom.xml关于hibernate的配置和异常信息如下,查了好多资料,问题还是没有解决。只知道是包冲突,就是不知道是哪个包....遇到这个问题的分享下是怎么解决的。。
maven pom:
<dependency>
<groupId>org.hibernate</groupId>
<ar
- Spark 性能相关参数配置详解-任务调度篇
Stark_Summer
sparkcachecpu任务调度yarn
随着Spark的逐渐成熟完善, 越来越多的可配置参数被添加到Spark中来, 本文试图通过阐述这其中部分参数的工作原理和配置思路, 和大家一起探讨一下如何根据实际场合对Spark进行配置优化。
由于篇幅较长,所以在这里分篇组织,如果要看最新完整的网页版内容,可以戳这里:http://spark-config.readthedocs.org/,主要是便
- css3滤镜
wangkeheng
htmlcss
经常看到一些网站的底部有一些灰色的图标,鼠标移入的时候会变亮,开始以为是js操作src或者bg呢,搜索了一下,发现了一个更好的方法:通过css3的滤镜方法。
html代码:
<a href='' class='icon'><img src='utv.jpg' /></a>
css代码:
.icon{-webkit-filter: graysc