大家好,我是脚丫先生 (o^^o)
虽然,脚丫一直从事的是大数据和后端的工作。
只不过,大家委以重任,产品的交付都是我去完成yyds(差点没累死)。
小伙伴都知道,微服务和基础环境的搭建,会有各种环境的依赖,那无疑是一件很痛苦的事情。
【针对这个问题】,我们必须找出来一个高效的处理方法,从而更加便捷的完成任务。
因此今天我就把多个的应用以docker-compose的形式告诉小伙伴们,大家可以根据自己
的需要进行编排,高效快速的完成产品交付,解放双手,势在必行。
只提供docker-compose文件没有提供镜像那就是大逆不道,午门斩首。
为了避免小伙伴们飙垃圾话,我把镜像也提供给大家,方便小伙伴们彻底解放十姑娘。
古之学者必有师。
链接:https://pan.baidu.com/s/1Bz1VVL-eq_yZVh2G3_PMXw
提取码:yyds
小伙伴们,可以自行更改镜像的标签:
docker load < 镜像.tar
docker tag 2e25d8496557 xxxxx.com/abc-dev/arc:1334
2e25d8496557:IMAGE ID,可以用docker images 查看镜像ID
xxxxx.com:私有hub域名
abc-dev:项目名称
arc:镜像名称
1334:镜像版本号
下面我们进正式的进入一条龙服务。
(docker-compose应用容器的部署会持续更新,总结)
数据库的重要性不言而喻了,所谓两军交战,粮草先行。
数据库就好比粮草,它是我们去开发应用的根本,但是它的种类是多种多样的。
小伙伴可以根据自己的业务需求进行选择。
通过docker-compose快速搭建数据库,只需三秒,划时代的改变了传统的繁琐。
首先在自己确定的目录,比如/usr/local下。
新建mysql文件夹。
之后在该mysql文件夹下编写docker-compose.yml。
(之后的容器部署,与mysql容器部署相同)
1)编写docker-compose.yml文件
[root@spark1 mysql]# vi docker-compose.yml
version: '3.0'
services:
db:
image: mysql:5.7
restart: always
environment:
MYSQL_ROOT_PASSWORD: 123456
command:
--default-authentication-plugin=mysql_native_password
--character-set-server=utf8mb4
--collation-server=utf8mb4_general_ci
--explicit_defaults_for_timestamp=true
--lower_case_table_names=1
--sql-mode=STRICT_TRANS_TABLES,NO_ZERO_IN_DATE,NO_ZERO_DATE,ERROR_FOR_DIVISION_BY_ZERO,NO_AUTO_CREATE_USER,NO_ENGINE_SUBSTITUTION
ports:
- 3306:3306
volumes:
- ./log:/var/log/mysql
- ./data:/var/lib/mysql
- ./conf:/etc/mysql
注意: 在有网络的环境下,会去自己搜索镜像。
如果,在内网(没有网络),那么需要自己先去下载镜像,导入服务器里。
可以参考: 前言我的叙述,以及为小伙伴们准备的镜像tar包。
2)启动容器
[root@spark1 mysql]# docker-compose up -d
1)编写docker-compose.yml文件
[root@spark1 redis]# vi docker-compose.yml
version: '3.0'
services:
redis:
restart: always
image: 10.1.119.12/gx/redis:5.0
container_name: redis
ports:
- 6379:6379
# 映射持久化目录
volumes:
- ./data:/data
# requirepass:配置登录密码
# 开启 appendonly 持久化
command: "/usr/local/bin/redis-server --requirepass cetc@2021 --appendonly yes"
2)启动容器
[root@spark1 redis]# docker-compose up -d
1)编写docker-compose.yml文件
[root@spark1 postgres]# vi docker-compose.yml
version: '3.0'
services:
postgres:
restart: always
image: 10.1.119.12/basic/postgres:11
privileged: true
ports:
- 5432:5432
environment:
POSTGRES_PASSWORD: postgres //密码
PGDATA: /var/lib/postgresql/data/pgdata
volumes:
- ./pgData:/var/lib/postgresql/data/pgdata
2)启动容器
[root@spark1 postgresql]# docker-compose up -d
1)编写docker-compose.yml文件
[root@spark1 oracle]# vi docker-compose.yml
version: '3.0'
services:
oracle:
container_name: oracle
image: registry.cn-hangzhou.aliyuncs.com/helowin/oracle_11g
ports:
- 1521:1521
restart: alway
2)启动容器
[root@spark1 oracle]# docker-compose up -d
1)编写docker-compose.yml文件
[root@spark1 influxdb]# vi docker-compose.yml
version: '3.0'
services:
influxdb:
restart: always
image: 10.1.119.12/basic/influxdb:1.8
container_name: influxdb
privileged: true
ports:
- 8083:8083
- 8086:8086
volumes:
- ./data:/var/lib/influxdb/data
- ./conf:/etc/influxdb
2)启动容器
[root@spark1 influxdb]# docker-compose up -d
1)编写docker-compose.yml文件
[root@spark1 neo4j]# vi docker-compose.yml
version: '3.0'
services:
neo4j:
container_name: neo4j
image: spins/neo4j-community-apoc:3.5.5
ports:
- 17474:7474
- 17687:7687
restart: always
volumes:
- ./data:/var/lib/neo4j/data
- ./logs:/var/lib/neo4j/logs
- /tmp:/tmp
deploy:
resources:
limits:
cpus: '1.00'
memory: 1024M
logging:
driver: "json-file"
options:
max-size: "50M"
max-file: "10"
environment:
- NEO4J_AUTH=neo4j/123456
2)启动容器
[root@spark1 neo4j]# docker-compose up -d
1)编写docker-compose.yml文件
[root@spark1 openTSDB]# vi docker-compose.yml
version: '3.0'
services:
opentsdb-docker:
image: petergrace/opentsdb-docker:latest
container_name: opentsdb
network_mode: "host"
privileged: true
environment:
- WAITSECS=30
ports:
- 4242:4242
volumes:
- ./data:/data/hbase # 数据所在目录
- ./opentsdb/opentsdb.conf:/ect/opentsdb/opentsdb.conf # 配置所在目录
2)启动容器
[root@spark1 openTSDB]# docker-compose up -d
1)编写docker-compose.yml文件
[root@spark1 sqlserver]# vi docker-compose.yml
version: '3.0'
services:
db:
image: mcr.microsoft.com/mssql/server:2017-latest
restart: always
container_name: sqlserver
environment:
ACCEPT_EULA: Y
SA_PASSWORD: cetc@2021
ports:
- 1433:1433
volumes:
- ./mssql:/var/opt/mssql
2)启动容器
[root@spark1 sqlserver]# docker-compose up -d
1)编写docker-compose.yml文件
[root@spark1 tomcat]# vi docker-compose.yml
version: '3'
services:
tomcat:
restart: always
image: tomcat
container_name: tomcat
ports:
- 8080:8080
2)启动容器
[root@spark1 tomcat]# docker-compose up -d
1)编写docker-compose.yml文件
[root@spark1 minio]# vi docker-compose.yml
version: '3'
services:
minio:
image: minio/minio:latest
restart: always
container_name: myminio
ports:
- 9000:9000
volumes:
- /usr/local/dockers/minio/data:/data
- /usr/local/dockers/minio/config:/root/.minio
environment:
MINIO_ACCESS_KEY: "minio"
MINIO_SECRET_KEY: "minio123"
command: server /data
2)启动容器
[root@spark1 minio]# docker-compose up -d
1)编写docker-compose.yml文件
[root@spark1 elasticsearch]# vi docker-compose.yml
version: '3.1'
services:
elasticsearch: #服务的名称
image: elasticsearch:7.16.1 #指定镜像的路径
restart: always #启动docker,自动运行当前容器
container_name: elasticsearch #容器名称
ports: #指定多个端口
- 9200:9200 #映射的端口号
environment:
discovery.type: single-node
2)启动容器
[root@spark1 elasticsearch]# docker-compose up -d
1)编写docker-compose.yml文件
[root@spark1 ftp]# vi docker-compose.yml
version: '3.1'
services:
ftp:
restart: always
image: 10.1.119.12/gx/ftp:latest
network_mode: "host"
container_name: iot-ftp
environment:
PASV_MIN_PORT: 21100
PASV_MAX_PORT: 21110
PASV_ADDRESS: 172.19.161.40
FTP_USER: ftpuser
FTP_PASS: 123456
ports:
- "31020:20"
- "31021:21"
- "31100-31110:21100-21110"
volumes:
- ./vsftpd:/home/vsftpd
2)启动容器
[root@spark1 ftp]# docker-compose up -d
1)编写zookeeper的docker-compose.yml文件
[root@spark1 zookeeper]# vi docker-compose.yml
version: '3.0'
services:
zoo1:
image: zookeeper:3.5.9
restart: always
ports:
- 2181:2181
volumes:
- ./zookeeper1/data:/data
- ./zookeeper1/zoo-log:/datalog
environment:
ZOO_MY_ID: 1
ZOO_SERVERS: server.1=zoo1:2888:3888;2181 server.2=zoo2:2888:3888;2181 server.3=zoo3:2888:3888;2181
zoo2:
image: zookeeper:3.5.9
restart: always
ports:
- 2182:2181
volumes:
- ./zookeeper2/data:/data
- ./zookeeper2/zoo-log:/datalog
environment:
ZOO_MY_ID: 2
ZOO_SERVERS: server.1=zoo1:2888:3888;2181 server.2=zoo2:2888:3888;2181 server.3=zoo3:2888:3888;2181
zoo3:
image: zookeeper:3.5.9
restart: always
ports:
- 2183:2181
volumes:
- ./zookeeper3/data:/data
- ./zookeeper3/zoo-log:/datalog
environment:
ZOO_MY_ID: 3
ZOO_SERVERS: server.1=zoo1:2888:3888;2181 server.2=zoo2:2888:3888;2181 server.3=zoo3:2888:3888;2181
2)启动zookeeper容器
[root@spark1 zookeeper]# docker-compose up -d
3)编写kafka的docker-compose.yml文件
[root@spark1 kafka]# vi docker-compose.yml
version: '3.0'
services:
kafka1:
image: kafka:0.11.0.1
ports:
- "9092:9092"
environment:
KAFKA_BROKER_ID: 1
KAFKA_ADVERTISED_HOST_NAME: 172.16.119.11
KAFKA_ADVERTISED_LISTENERS: PLAINTEXT://172.16.119.11:9092
KAFKA_ZOOKEEPER_CONNECT: 172.16.119.11:2181,172.16.119.11:2182,172.16.119.11:2183
KAFKA_ADVERTISED_PORT: 9092
KAFKA_OFFSETS_TOPIC_REPLICATION_FACTOR: 1
KAFKA_DELETE_TOPIC_ENABLE: true
container_name: kafka1
volumes:
- /etc/localtime:/etc/localtime:ro
kafka2:
image: kafka:0.11.0.1
ports:
- "9093:9092"
environment:
KAFKA_BROKER_ID: 2
KAFKA_ADVERTISED_HOST_NAME: 172.16.119.11
KAFKA_ADVERTISED_LISTENERS: PLAINTEXT://172.16.119.11:9093
KAFKA_ZOOKEEPER_CONNECT: 172.16.119.11:2181,172.16.119.11:2182,172.16.119.11:2183
KAFKA_ADVERTISED_PORT: 9093
KAFKA_OFFSETS_TOPIC_REPLICATION_FACTOR: 1
KAFKA_DELETE_TOPIC_ENABLE: true
container_name: kafka2
volumes:
- /etc/localtime:/etc/localtime:ro
kafka3:
image: kafka:0.11.0.1
ports:
- "9094:9092"
environment:
KAFKA_BROKER_ID: 3
KAFKA_ADVERTISED_HOST_NAME: 172.16.119.11
KAFKA_ADVERTISED_LISTENERS: PLAINTEXT://172.16.119.11:9094
KAFKA_ZOOKEEPER_CONNECT: 172.16.119.11:2181,172.16.119.11:2182,172.16.119.11:2183
KAFKA_ADVERTISED_PORT: 9094
KAFKA_OFFSETS_TOPIC_REPLICATION_FACTOR: 1
KAFKA_DELETE_TOPIC_ENABLE: true
container_name: kafka3
volumes:
- /etc/localtime:/etc/localtime:ro
4)启动kafka容器
[root@spark1 kafka]# docker-compose up -d
1)编写datax-web的docker-compose.yml文件
[root@spark1 datax-web]# vi docker-compose.yml
version: '3.0'
services:
dataxweb-admin:
image: 10.1.119.12/gx/iot-datax-admin:latest
network_mode: host
restart: always
container_name: "dataxweb-admin"
environment:
REGISTER: "true"
server.port: "9527"
MYSQL_USERNAME: "root"
MYSQL_PASSWORD: "123456"
MYSQL_IP_PORT: "172.16.117.171:3306"
MYSQL_DB_NAME: "datax_web"
command: []
dataxweb-executor:
image: 10.1.119.12/gx/dataxweb/executor:iot
network_mode: host
restart: always
container_name: "dataxweb-executor"
depends_on:
- dataxweb-admin
environment:
REGISTER: "true"
DATAX_WEB_URL: "http://172.16.117.171:9527" #dataxweb-admin地址
command: []
2)启动datax-web容器
[root@spark1 kafka]# docker-compose up -d
注意: datax_web数据库,如果需要,可以找我。
1)编写nacos的docker-compose.yml文件
[root@spark1 nacos]# vi docker-compose.yml
version: '2'
services:
nacos:
image: nacos/nacos-server:latest
container_name: nacos-standalone-mysql
network_mode: "host"
environment:
PREFER_HOST_MODE: "hostname"
MODE: "standalone"
volumes:
- ./application.properties:/home/nacos/conf/application.properties
- ./standalone-logs/:/home/nacos/logs
ports:
- "8848:8848"
restart: on-failure
nacos文件夹下建立:application.properties
server.contextPath=/nacos
server.servlet.contextPath=/nacos
server.port=8848
management.metrics.export.elastic.enabled=false
management.metrics.export.influx.enabled=false
server.tomcat.accesslog.enabled=true
server.tomcat.accesslog.pattern=%h %l %u %t "%r" %s %b %D %{User-Agent}i
server.tomcat.basedir=
nacos.security.ignore.urls=/,/**/*.css,/**/*.js,/**/*.html,/**/*.map,/**/*.svg,/**/*.png,/**/*.ico,/console-fe/public/**,/v1/auth/login,/v1/console/health/**,/v1/cs/**,/v1/ns/**,/v1/cmdb/**,/actuator/**,/v1/console/server/**
spring.datasource.platform=mysql
db.num=1
db.url.0=jdbc:mysql://172.10.10.71:3306/ry-config?characterEncoding=utf8&connectTimeout=1000&socketTimeout=3000&autoReconnect=true
db.user=root
db.password=cetc@2021
2)启动datax-web容器
[root@spark1 nacos]# docker-compose up -d
1)编写nginx的docker-compose.yml文件
[root@spark1 nginx]# vi docker-compose.yml
version: '3.0'
services:
nginx:
restart: always
image: nginx
container_name: nginx
ports:
- 80:80
volumes:
- ./nginx.conf:/etc/nginx/nginx.conf
- ./log:/var/log/nginx
- ./html:/usr/share/nginx/html
注意:nginx.conf需要根据自己的情况,进行修改。
nginx.conf
user root;
worker_processes 1;
#error_log logs/error.log;
#error_log logs/error.log notice;
#error_log logs/error.log info;
#pid logs/nginx.pid;
events {
worker_connections 1024;
}
http {
include mime.types;
default_type application/octet-stream;
#log_format main '$remote_addr - $remote_user [$time_local] "$request" '
# '$status $body_bytes_sent "$http_referer" '
# '"$http_user_agent" "$http_x_forwarded_for"';
#access_log logs/access.log main;
sendfile on;
#tcp_nopush on;
#keepalive_timeout 0;
keepalive_timeout 65;
#gzip on;
server {
listen 80;
server_name localhost;
client_max_body_size 500M;
#charset koi8-r;
#access_log logs/host.access.log main;
location / {
root /usr/share/nginx/html;
index index.html index.htm;
}
location /api/ {
proxy_set_header Host $host;
proxy_pass http://192.168.239.129:50200/;
#add_header 'Access-Control-Allow-Origin' '*';
#add_header 'Access-Control-Allow-Credentials' 'true';
#add_header 'Access-Control-Allow-Methods' 'GET, POST, PUT, DELETE, OPTIONS';
}
#error_page 404 /404.html;
# redirect server error pages to the static page /50x.html
#
error_page 500 502 503 504 /50x.html;
location = /50x.html {
root html;
}
}
}
2)启动datax-web容器
[root@spark1 nginx]# docker-compose up -d
总结: docker-compose应用容器部署。都是以下三步骤:
(1)在自己确定的目录,新建对应容器的文件夹。
比如部署mysql,那么在自己确定的目录下,新建mysql文件夹。
(2)在新建的文件夹下,编写对应容器的docker-compose.yml文件。
(3)最后以docker-compose up -d 命令启动容器。
祝各位终有所成,收获满满!
博客主页:https://blog.csdn.net/shujuelin
欢迎点赞 收藏 ⭐留言 如有错误敬请指正