- Boltz-2:革命性生物分子模型,加速药物发现的新引擎
花生糖@
AIGC学习资料库Boltz-2生物模型AI
在药物研发领域,预测蛋白质与其他分子间的结合强度(BindingAffinity)始终是核心挑战之一。传统方法如自由能微扰法(FEP)虽然精确,但计算成本极高,难以大规模应用。如今,Boltz-2的诞生打破了这一瓶颈——这是首个开源的深度学习模型,其结合强度预测准确度接近FEP方法,却将速度提升了1000倍,成为药物早期筛选的“加速器”。项目简介Boltz-2是由jwohlwend团队开发的生物分
- Node.js 后台系统 - 基本增删改查实现
个人简介个人主页:魔术师学习方向:主攻前端方向,正逐渐往全栈发展个人状态:研发工程师,现效力于政务服务网事业人生格言:“心有多大,舞台就有多大。”推荐学习:Vue2Vue3Vue2/3项目实战Node.js实战Three.js鸿蒙开发小程序使用备注:仅供学习交流严禁用于商业用途,若发现侵权内容请及时联系作者更新进度:持续更新内容个人名片:每篇文章最下方都有加入方式,旨在交流学习&资源分享,快加
- CSC研修计划的书写
博主最近在申请CSC,所以也会更新一下自己的学习笔记,有需要的可以关注我一下,同时有问题大家可以一起交流一下啊一要求(fromCSC官网)①拟留学专业(研究课题)在国内外研究情况及水平;②拟选择的留学国别、留学单位及选择原因(应简单评述对方国家及留学单位在申请人所从事学科、专业领域的水平、优势,申请人及所在单位与对方有无合作基础及业务联系);③达到本次出国学习预期目标的可行性,结合本人目前从事的工
- 【机器学习笔记 Ⅱ】9 模型评估
巴伦是只猫
机器学习机器学习笔记人工智能
评估机器学习模型是确保其在实际应用中有效性和可靠性的关键步骤。以下是系统化的评估方法,涵盖分类、回归、聚类等任务的评估指标和技术:一、分类模型评估1.基础指标2.高级指标ROC-AUC:通过绘制真正例率(TPR)vs假正例率(FPR)曲线下面积评估模型整体性能。AUC=1:完美分类;AUC=0.5:随机猜测。适用于二分类及多分类(OvR或OvO策略)。混淆矩阵:可视化模型在各类别上的具体错误(如将
- 【机器学习笔记 Ⅱ】7 多类分类
巴伦是只猫
机器学习机器学习笔记分类
1.多类分类(Multi-classClassification)定义多类分类是指目标变量(标签)有超过两个类别的分类任务。例如:手写数字识别:10个类别(0~9)。图像分类:区分猫、狗、鸟等。新闻主题分类:政治、经济、体育等。特点互斥性:每个样本仅属于一个类别(区别于多标签分类)。输出要求:模型需输出每个类别的概率分布,且概率之和为1。实现方式One-vs-Rest(OvR):训练K个二分类器(
- DRM 显示控制与硬件参数配置链路总结(以 i.MX8MP 为例)
DRM显示控制与硬件参数配置链路总结(以i.MX8MP为例)支持作者新书,深入学习嵌入式开发知识:京东购买链接一、核心理解显示参数(如分辨率、时序、色深)最终来源于用户空间,由DRM驱动完成传递与配置,并由LCD控制器驱动实际硬件输出。设备树中通常不写死这些参数。二、显示硬件参数:定义与归属参数项通常设置位置说明分辨率用户空间(如Weston)通过DRMAPI设置,例如1920x1080@60Hz
- 大语言模型(LLM)课程学习(Curriculum Learning)、数据课程(data curriculum)指南:从原理到实践
在人工智能的浪潮之巅,我们总会惊叹于GPT-4、Llama3.1、Qwen2.5这些顶尖大语言模型(LLM)所展现出的惊人能力。它们似乎无所不知,能写诗、能编程、能进行复杂的逻辑推理。一个自然而然的问题是:它们是如何“学”会这一切的?大多数人会回答:“用海量数据喂出来的。”这个答案只说对了一半。如果你认为只要把互联网上能找到的所有数据(比如15万亿个token)随机打乱,然后“一锅烩”地喂给模型,
- Halcon学习之select_shape()算子参数介绍
一、算子介绍select_shape()是HALCON中用于基于形状特征筛选区域的关键算子,广泛应用于图像分割、目标检测和工业质检等领域。它允许用户根据指定的几何特征从输入区域集合中选择符合条件的区域。至于为什么单独介绍这个算子呢,因为他筛选特征的方式有太多种了,如果可以熟练的掌握这些特征,那在后面的例程学习以及实际应用中,可谓是得心应手了。二、算子参数select_shape(Regions:S
- Halcon例程学习四:pcb_inspection.hdev
CVer_
Halcon例程学习学习
一、例程介绍这个例程主要是检测pcb电路板中的一些电路线缺陷二、例程相关算子gray_opening_shape()//特定形状结构元的灰度开运算gray_closing_shape()//特定形状结构元的灰度闭运算dyn_threshold()//动态二值化操作三、例程处理流程1.对原图像进行灰度开运算,图像先腐蚀再膨胀。经过灰度开运算后,图像整体会变暗一些,并且会将黑色区域中的白色缺陷进行填充
- PPT处理控件Aspose功能演示:使用C#从PowerPoint文件中提取文本
Lee-Shyllen
Aspose文档开发文档管理asposePPT文档开发文档处理
有时需要从PowerPoint幻灯片中提取文本以执行文本分析。另一方面,可能需要提取文本并将其保存在文件或数据库中以进行进一步处理。因此,本文介绍了如何使用C#从PowerPoint演示文稿中提取文本。特别是,将学习如何从特定的幻灯片或整个演示文稿中提取文本。从PowerPoint幻灯片中提取文本从PowerPoint演示文稿中提取文本为了处理PowerPoint演示文稿,Aspose提供Aspo
- 人工智能学习资源
Hemy08
人工智能学习
无机器学习基础:https://www.coursera.org/learn/machine-learning有机器学习基础:MachineYearning深度学习入门:https://www.coursera.org/learn/neural-networks-deep-learning
- opencv初步学习——图像处理2
这一部分主要讲解如何初步地创建一个图像,以及彩色图像我们的一些基本处理方法一、创建一个灰度图像1-1、zeros()函数[NumPy库]要用到这一个函数,首先我们需要调用我们的NumPy库,这一个函数的作用是可以帮助我们生成一个元素值都是0的二维数组,如果我们把这些数据放到一张图片里面去,那么就对应着我们的一个黑色图像。当然我们也可以通过修改数组中的数字大小来改变图像的颜色(但还是灰度图像)(1)
- 【DeepSeek开源周】Day 4:DualPipe & EPLB 学习笔记
蓝海星梦
DeepSeek开源周探秘开源学习笔记人工智能云计算分布式
目录一、DualPipe&EPLB概述二、DualPipe详解1.流水线并行策略(1)F-then-B策略(2)1F1B策略2.朴素流水线并行3.GPipe微批次流水线并行4.PipeStream5.ZBPP6.DualPipe7.DualPipeV8.流水线并行方案对比三、EPLB详解1.专家并行(EP)2.EPLB冗余专家策略3.负载均衡策略(1)分层负载均衡(2)全局负载均衡(3)接口和示例
- 2025最新盘点:9款高效韦恩图工具推荐
Designseek满血版
人工智能图论
在数据分析、逻辑推理以及众多学术研究领域,韦恩图都扮演着极为关键的角色。它以直观的圆形或椭圆形重叠区域,清晰地展现出不同集合之间的关系,无论是集合间的交集、并集还是补集,都能一目了然地呈现出来。无论是学生在学习数学、逻辑学课程时梳理知识点,还是专业人士在进行市场调研、项目规划时分析数据,亦或是科研人员在撰写论文、展示研究成果时阐述理论框架,一款好用的韦恩图绘制工具都显得至关重要。今天,就让我为大家
- 量子计算+AI芯片:光子计算如何重构神经网络硬件生态
前言前些天发现了一个巨牛的人工智能免费学习网站,通俗易懂,风趣幽默,忍不住分享一下给大家。点击跳转到网站量子计算+AI芯片:光子计算如何重构神经网络硬件生态——2025年超异构计算架构下的万亿参数模型训练革命产业拐点:英伟达BlackwellUltra发布光互连版GPU,IBM量子处理器突破512比特,光子计算商用成本降至$5/TOPS实测突破:Llama3-405B在光子-量子混合集群训练能耗下
- 【机器学习笔记 Ⅱ】4 神经网络中的推理
推理(Inference)是神经网络在训练完成后利用学到的参数对新数据进行预测的过程。与训练阶段不同,推理阶段不计算梯度也不更新权重,仅执行前向传播。以下是其实现原理和代码示例的完整解析:1.推理的核心步骤加载训练好的模型参数(权重和偏置)。前向传播:输入数据逐层计算,得到输出。后处理:根据任务类型解析输出(如分类取概率最大值,回归直接输出)。2.代码实现(Python+NumPy)(1)定义模型
- 【大厂面试题】千万级大表如何快速删除大量数据
CBeann
【面试题】【架构&案例】【MySQL】java开源springjvmmysql大厂面试题
-作者简介:大厂高级Java开发工程师-称号:CSDN博客专家✨、阿里云博客专家-公众号:云服务小管家。免费的阿里云服务器☁和云环境直接使用-生活:专注于后端技术分享迷茫时可来瞅瞅码农轨迹♂️-服务:提供模拟面试和简历辅导,提供生产项目。内推可私信✉-卷卷群:可以和大家一起学习,一起进步-如果感觉博主的文章还不错的话,请三连支持一下博主哦背景最近在做一个项目,除了验证功能,还需要验证性能,所以前
- 开源语音分离工具大比拼:人声 VS 背景音乐 ⚔️ - 获取干净训练语音 (数据截至 2025年4月17日)!!!
小丁学Java
python人工智能
开源语音分离工具大比拼:人声VS背景音乐⚔️-获取干净训练语音(数据截至2025年4月17日)在音频处理,特别是机器学习训练数据的准备中,获取纯净的人声(去除背景音乐或噪声)是一个常见的痛点。幸运的是,开源社区提供了许多强大的工具来帮助我们完成这项任务!本文将盘点一系列GitHub上的开源语音分离项目,重点关注那些能有效分离“人物语音”和“背景音乐”的工具,并根据GitHub星标⭐(反映社区关注度
- TensorFlow图神经网络(GNN)入门指南
AI天才研究院
AI人工智能与大数据tensorflow神经网络人工智能ai
TensorFlow图神经网络(GNN)入门指南关键词:TensorFlow、图神经网络、GNN、深度学习、图数据、节点嵌入、图卷积网络摘要:本文全面介绍如何使用TensorFlow实现图神经网络(GNN)。我们将从图数据的基本概念开始,深入探讨GNN的核心原理,包括图卷积网络(GCN)、图注意力网络(GAT)等流行架构,并通过TensorFlow代码示例展示如何构建和训练GNN模型。文章还将涵盖
- 鸿蒙(HarmonyOS)性能优化实战-启动分析工具Launch Profiler 学习指南
愿天堂没有996
HarmonyOS鸿蒙开发移动开发harmonyos性能优化HarmonyOSOpenHarmony移动开发
LaunchProfiler概述DevEcoStudio内置Profiler分析调优工具。其中Launch主要用于分析应用或服务的启动耗时,分析启动周期各阶段的耗时情况、核心线程的运行情况等,协助开发者识别启动缓慢的原因。此外,Launch任务窗口还集成了Time、CPU、Frame场景分析任务的功能,方便开发者在分析启动耗时的过程中同步对比同一时段的其他资源占用情况。场景示例如下代码在页面绘制之
- 十五天Python系统学习教程第十五天
Day15详细学习计划:Python综合项目实战与学习路径规划学习目标✅综合运用前14天知识完成完整项目开发✅掌握生产级项目架构设计与优化技巧✅制定后续学习计划与技能提升方案✅理解Python工程化开发最佳实践一、实战项目:企业级任务管理系统1.1项目需求核心功能:用户认证(JWT令牌)任务CRUD与状态流转(待办/进行中/已完成)任务分类与优先级管理数据统计可视化(任务完成率/耗时分析)邮件通知
- 【机器学习笔记 Ⅲ】3 异常检测算法
巴伦是只猫
机器学习机器学习笔记算法
异常检测算法(AnomalyDetection)详解异常检测是识别数据中显著偏离正常模式的样本(离群点)的技术,广泛应用于欺诈检测、故障诊断、网络安全等领域。以下是系统化的解析:1.异常类型类型描述示例点异常单个样本明显异常信用卡交易中的天价消费上下文异常在特定上下文中异常(如时间序列)夏季气温突降至零下集体异常一组相关样本联合表现为异常网络流量中突然的DDOS攻击流量2.常用算法(1)基于统计的
- 【机器学习笔记 Ⅲ】4 特征选择
巴伦是只猫
机器学习机器学习笔记人工智能
特征选择(FeatureSelection)系统指南特征选择是机器学习中优化模型性能的关键步骤,通过筛选最相关、信息量最大的特征,提高模型精度、降低过拟合风险并加速训练。以下是完整的特征选择方法论:1.特征选择的核心目标提升模型性能:去除噪声和冗余特征,增强泛化能力。降低计算成本:减少训练和预测时间。增强可解释性:简化模型,便于业务理解。2.特征选择方法分类(1)过滤法(FilterMethods
- 机器学习笔记二-回归
回归是统计学和机器学习中的一种基本方法,用于建模变量之间的关系,特别是用一个或多个自变量(输入变量)来预测一个因变量(输出变量)的值。回归分析广泛应用于预测、趋势分析和关联研究中。根据目标和数据的性质,可以使用不同类型的回归方法。1.回归的基本概念:自变量(IndependentVariable):也称为预测变量、解释变量,是模型中的输入变量,用于预测或解释因变量的变化。因变量(Dependent
- OpenHarmony解读之设备认证:Pake协议详解与实战
陈乔布斯
鸿蒙开发HarmonyOSOpenHarmonyharmonyos分布式鸿蒙开发软总线openHarmony嵌入式硬件
往期推文全新看点(文中附带最新·鸿蒙全栈学习笔记)①鸿蒙应用开发与鸿蒙系统开发哪个更有前景?②嵌入式开发适不适合做鸿蒙南向开发?看完这篇你就了解了~③对于大前端开发来说,转鸿蒙开发究竟是福还是祸?④鸿蒙岗位需求突增!移动端、PC端、IoT到底该怎么选?⑤记录一场鸿蒙开发岗位面试经历~⑥持续更新中……一、概述在设备认证过程中,pake协议用于认证会话密钥协商,基于该会话密钥,双方可以安全地交换各自的
- AI LLM架构与原理 - 预训练模型深度解析
陈乔布斯
AI人工智能大模型人工智能架构机器学习深度学习大模型PythonAI
一、引言在人工智能领域,大型语言模型(LLM)的发展日新月异,预训练模型作为LLM的核心技术,为模型的强大性能奠定了基础。预训练模型通过在大规模无标注数据上进行学习,能够捕捉语言的通用模式和语义信息,从而在各种自然语言处理任务中展现出卓越的能力。本文将深入探讨AILLM架构与原理中预训练模型的方法论和技术,结合图解、代码解析和实际案例,为读者呈现一个全面且易懂的预训练模型图景。二、预训练模型的基本
- Python程序员如何制定学习计划?提高编写代码的能力
在工作和生活压力之下,如何提升自己的技能和能力?这是许多人都面临的问题。如果你也有这样的问题,那么首先要明确的是,要想提升自己的能力,必须要有一个清晰的计划和方向。这个计划可以是长期的,也可以是短期的,但必须要有一个大的方向性。接下来,我们来看看如何制定一个有效的计划。如果你不知道如何制定计划,其实很简单。你可以闭上眼睛,想一想自己哪些方面比较薄弱,比如多线程锁、Spring的一些核心技术源码、分
- 深度学习微调中的优化器全景解析:从理论到实践
北辰alk
AI深度学习人工智能
文章目录一、基础优化器:深度学习微调的基石1.1随机梯度下降(SGD)1.2AdaGrad(自适应梯度算法)二、自适应优化器:现代深度学习的标配2.1RMSProp2.2Adam(自适应矩估计)三、大模型微调专用优化器3.1LAMB(Layer-wiseAdaptiveMoments)3.2Sophia(二阶优化启发)四、优化器性能对比研究4.1在GLUE基准上的表现(BERT-base微调)4.
- 【AI论文】GLM-4.1V-思考:借助可扩展强化学习实现通用多模态推理
东临碣石82
人工智能
摘要:我们推出GLM-4.1V-Thinking这一视觉语言模型(VLM),该模型旨在推动通用多模态推理的发展。在本报告中,我们分享了在以推理为核心的训练框架开发过程中的关键发现。我们首先通过大规模预训练开发了一个具备显著潜力的高性能视觉基础模型,可以说该模型为最终性能设定了上限。随后,借助课程采样强化学习(ReinforcementLearningwithCurriculumSampling,R
- PyTorch 详细安装教程及核心API使用指南
慕婉0307
pytorchpytorch人工智能python
一、PyTorch简介PyTorch是由FacebookAIResearch(FAIR)于2016年开发的开源深度学习框架,现已成为学术界和工业界最受欢迎的深度学习工具之一。其核心优势在于采用了动态计算图(DynamicComputationGraph,又称"define-by-run"机制),这使得开发者能够像编写普通Python代码一样构建神经网络,并在运行时动态调整计算图结构,大大提高了研究
- 算法 单链的创建与删除
换个号韩国红果果
c算法
先创建结构体
struct student {
int data;
//int tag;//标记这是第几个
struct student *next;
};
// addone 用于将一个数插入已从小到大排好序的链中
struct student *addone(struct student *h,int x){
if(h==NULL) //??????
- 《大型网站系统与Java中间件实践》第2章读后感
白糖_
java中间件
断断续续花了两天时间试读了《大型网站系统与Java中间件实践》的第2章,这章总述了从一个小型单机构建的网站发展到大型网站的演化过程---整个过程会遇到很多困难,但每一个屏障都会有解决方案,最终就是依靠这些个解决方案汇聚到一起组成了一个健壮稳定高效的大型系统。
看完整章内容,
- zeus持久层spring事务单元测试
deng520159
javaDAOspringjdbc
今天把zeus事务单元测试放出来,让大家指出他的毛病,
1.ZeusTransactionTest.java 单元测试
package com.dengliang.zeus.webdemo.test;
import java.util.ArrayList;
import java.util.List;
import org.junit.Test;
import
- Rss 订阅 开发
周凡杨
htmlxml订阅rss规范
RSS是 Really Simple Syndication的缩写(对rss2.0而言,是这三个词的缩写,对rss1.0而言则是RDF Site Summary的缩写,1.0与2.0走的是两个体系)。
RSS
- 分页查询实现
g21121
分页查询
在查询列表时我们常常会用到分页,分页的好处就是减少数据交换,每次查询一定数量减少数据库压力等等。
按实现形式分前台分页和服务器分页:
前台分页就是一次查询出所有记录,在页面中用js进行虚拟分页,这种形式在数据量较小时优势比较明显,一次加载就不必再访问服务器了,但当数据量较大时会对页面造成压力,传输速度也会大幅下降。
服务器分页就是每次请求相同数量记录,按一定规则排序,每次取一定序号直接的数据
- spring jms异步消息处理
510888780
jms
spring JMS对于异步消息处理基本上只需配置下就能进行高效的处理。其核心就是消息侦听器容器,常用的类就是DefaultMessageListenerContainer。该容器可配置侦听器的并发数量,以及配合MessageListenerAdapter使用消息驱动POJO进行消息处理。且消息驱动POJO是放入TaskExecutor中进行处理,进一步提高性能,减少侦听器的阻塞。具体配置如下:
- highCharts柱状图
布衣凌宇
hightCharts柱图
第一步:导入 exporting.js,grid.js,highcharts.js;第二步:写controller
@Controller@RequestMapping(value="${adminPath}/statistick")public class StatistickController { private UserServi
- 我的spring学习笔记2-IoC(反向控制 依赖注入)
aijuans
springmvcSpring 教程spring3 教程Spring 入门
IoC(反向控制 依赖注入)这是Spring提出来了,这也是Spring一大特色。这里我不用多说,我们看Spring教程就可以了解。当然我们不用Spring也可以用IoC,下面我将介绍不用Spring的IoC。
IoC不是框架,她是java的技术,如今大多数轻量级的容器都会用到IoC技术。这里我就用一个例子来说明:
如:程序中有 Mysql.calss 、Oracle.class 、SqlSe
- TLS java简单实现
antlove
javasslkeystoretlssecure
1. SSLServer.java
package ssl;
import java.io.FileInputStream;
import java.io.InputStream;
import java.net.ServerSocket;
import java.net.Socket;
import java.security.KeyStore;
import
- Zip解压压缩文件
百合不是茶
Zip格式解压Zip流的使用文件解压
ZIP文件的解压缩实质上就是从输入流中读取数据。Java.util.zip包提供了类ZipInputStream来读取ZIP文件,下面的代码段创建了一个输入流来读取ZIP格式的文件;
ZipInputStream in = new ZipInputStream(new FileInputStream(zipFileName));
&n
- underscore.js 学习(一)
bijian1013
JavaScriptunderscore
工作中需要用到underscore.js,发现这是一个包括了很多基本功能函数的js库,里面有很多实用的函数。而且它没有扩展 javascript的原生对象。主要涉及对Collection、Object、Array、Function的操作。 学
- java jvm常用命令工具——jstatd命令(Java Statistics Monitoring Daemon)
bijian1013
javajvmjstatd
1.介绍
jstatd是一个基于RMI(Remove Method Invocation)的服务程序,它用于监控基于HotSpot的JVM中资源的创建及销毁,并且提供了一个远程接口允许远程的监控工具连接到本地的JVM执行命令。
jstatd是基于RMI的,所以在运行jstatd的服务
- 【Spring框架三】Spring常用注解之Transactional
bit1129
transactional
Spring可以通过注解@Transactional来为业务逻辑层的方法(调用DAO完成持久化动作)添加事务能力,如下是@Transactional注解的定义:
/*
* Copyright 2002-2010 the original author or authors.
*
* Licensed under the Apache License, Version
- 我(程序员)的前进方向
bitray
程序员
作为一个普通的程序员,我一直游走在java语言中,java也确实让我有了很多的体会.不过随着学习的深入,java语言的新技术产生的越来越多,从最初期的javase,我逐渐开始转变到ssh,ssi,这种主流的码农,.过了几天为了解决新问题,webservice的大旗也被我祭出来了,又过了些日子jms架构的activemq也开始必须学习了.再后来开始了一系列技术学习,osgi,restful.....
- nginx lua开发经验总结
ronin47
使用nginx lua已经两三个月了,项目接开发完毕了,这几天准备上线并且跟高德地图对接。回顾下来lua在项目中占得必中还是比较大的,跟PHP的占比差不多持平了,因此在开发中遇到一些问题备忘一下 1:content_by_lua中代码容量有限制,一般不要写太多代码,正常编写代码一般在100行左右(具体容量没有细心测哈哈,在4kb左右),如果超出了则重启nginx的时候会报 too long pa
- java-66-用递归颠倒一个栈。例如输入栈{1,2,3,4,5},1在栈顶。颠倒之后的栈为{5,4,3,2,1},5处在栈顶
bylijinnan
java
import java.util.Stack;
public class ReverseStackRecursive {
/**
* Q 66.颠倒栈。
* 题目:用递归颠倒一个栈。例如输入栈{1,2,3,4,5},1在栈顶。
* 颠倒之后的栈为{5,4,3,2,1},5处在栈顶。
*1. Pop the top element
*2. Revers
- 正确理解Linux内存占用过高的问题
cfyme
linux
Linux开机后,使用top命令查看,4G物理内存发现已使用的多大3.2G,占用率高达80%以上:
Mem: 3889836k total, 3341868k used, 547968k free, 286044k buffers
Swap: 6127608k total,&nb
- [JWFD开源工作流]当前流程引擎设计的一个急需解决的问题
comsci
工作流
当我们的流程引擎进入IRC阶段的时候,当循环反馈模型出现之后,每次循环都会导致一大堆节点内存数据残留在系统内存中,循环的次数越多,这些残留数据将导致系统内存溢出,并使得引擎崩溃。。。。。。
而解决办法就是利用汇编语言或者其它系统编程语言,在引擎运行时,把这些残留数据清除掉。
- 自定义类的equals函数
dai_lm
equals
仅作笔记使用
public class VectorQueue {
private final Vector<VectorItem> queue;
private class VectorItem {
private final Object item;
private final int quantity;
public VectorI
- Linux下安装R语言
datageek
R语言 linux
命令如下:sudo gedit /etc/apt/sources.list1、deb http://mirrors.ustc.edu.cn/CRAN/bin/linux/ubuntu/ precise/ 2、deb http://dk.archive.ubuntu.com/ubuntu hardy universesudo apt-key adv --keyserver ke
- 如何修改mysql 并发数(连接数)最大值
dcj3sjt126com
mysql
MySQL的连接数最大值跟MySQL没关系,主要看系统和业务逻辑了
方法一:进入MYSQL安装目录 打开MYSQL配置文件 my.ini 或 my.cnf查找 max_connections=100 修改为 max_connections=1000 服务里重起MYSQL即可
方法二:MySQL的最大连接数默认是100客户端登录:mysql -uusername -ppass
- 单一功能原则
dcj3sjt126com
面向对象的程序设计软件设计编程原则
单一功能原则[
编辑]
SOLID 原则
单一功能原则
开闭原则
Liskov代换原则
接口隔离原则
依赖反转原则
查
论
编
在面向对象编程领域中,单一功能原则(Single responsibility principle)规定每个类都应该有
- POJO、VO和JavaBean区别和联系
fanmingxing
VOPOJOjavabean
POJO和JavaBean是我们常见的两个关键字,一般容易混淆,POJO全称是Plain Ordinary Java Object / Plain Old Java Object,中文可以翻译成:普通Java类,具有一部分getter/setter方法的那种类就可以称作POJO,但是JavaBean则比POJO复杂很多,JavaBean是一种组件技术,就好像你做了一个扳子,而这个扳子会在很多地方被
- SpringSecurity3.X--LDAP:AD配置
hanqunfeng
SpringSecurity
前面介绍过基于本地数据库验证的方式,参考http://hanqunfeng.iteye.com/blog/1155226,这里说一下如何修改为使用AD进行身份验证【只对用户名和密码进行验证,权限依旧存储在本地数据库中】。
将配置文件中的如下部分删除:
<!-- 认证管理器,使用自定义的UserDetailsService,并对密码采用md5加密-->
- mac mysql 修改密码
IXHONG
mysql
$ sudo /usr/local/mysql/bin/mysqld_safe –user=root & //启动MySQL(也可以通过偏好设置面板来启动)$ sudo /usr/local/mysql/bin/mysqladmin -uroot password yourpassword //设置MySQL密码(注意,这是第一次MySQL密码为空的时候的设置命令,如果是修改密码,还需在-
- 设计模式--抽象工厂模式
kerryg
设计模式
抽象工厂模式:
工厂模式有一个问题就是,类的创建依赖于工厂类,也就是说,如果想要拓展程序,必须对工厂类进行修改,这违背了闭包原则。我们采用抽象工厂模式,创建多个工厂类,这样一旦需要增加新的功能,直接增加新的工厂类就可以了,不需要修改之前的代码。
总结:这个模式的好处就是,如果想增加一个功能,就需要做一个实现类,
- 评"高中女生军训期跳楼”
nannan408
首先,先抛出我的观点,各位看官少点砖头。那就是,中国的差异化教育必须做起来。
孔圣人有云:有教无类。不同类型的人,都应该有对应的教育方法。目前中国的一体化教育,不知道已经扼杀了多少创造性人才。我们出不了爱迪生,出不了爱因斯坦,很大原因,是我们的培养思路错了,我们是第一要“顺从”。如果不顺从,我们的学校,就会用各种方法,罚站,罚写作业,各种罚。军
- scala如何读取和写入文件内容?
qindongliang1922
javajvmscala
直接看如下代码:
package file
import java.io.RandomAccessFile
import java.nio.charset.Charset
import scala.io.Source
import scala.reflect.io.{File, Path}
/**
* Created by qindongliang on 2015/
- C语言算法之百元买百鸡
qiufeihu
c算法
中国古代数学家张丘建在他的《算经》中提出了一个著名的“百钱买百鸡问题”,鸡翁一,值钱五,鸡母一,值钱三,鸡雏三,值钱一,百钱买百鸡,问翁,母,雏各几何?
代码如下:
#include <stdio.h>
int main()
{
int cock,hen,chick; /*定义变量为基本整型*/
for(coc
- Hadoop集群安全性:Hadoop中Namenode单点故障的解决方案及详细介绍AvatarNode
wyz2009107220
NameNode
正如大家所知,NameNode在Hadoop系统中存在单点故障问题,这个对于标榜高可用性的Hadoop来说一直是个软肋。本文讨论一下为了解决这个问题而存在的几个solution。
1. Secondary NameNode
原理:Secondary NN会定期的从NN中读取editlog,与自己存储的Image进行合并形成新的metadata image
优点:Hadoop较早的版本都自带,