channel h k h_k hk is modeled as independent Rayleigh fading with average power loss set as 10^−3
import numpy as np
# Set the parameters
average_power_loss = 1e-3 # Average power loss (10^(-3))
num_samples = 1000 # Number of fading samples to generate
# Calculate the Rayleigh scale parameter (sigma)
# The scale parameter is related to the average power loss as follows:
# average_power_loss = 2 * sigma^2
sigma = np.sqrt(average_power_loss / 2)
# Generate independent Rayleigh fading samples
rayleigh_samples = sigma * np.random.randn(num_samples) + 1j * sigma * np.random.randn(num_samples)
# The above code generates complex samples, where the real and imaginary parts
# are both independently Rayleigh distributed.
# Optionally, you can plot a histogram of the fading samples to visualize
# the Rayleigh distribution.
import matplotlib.pyplot as plt
plt.hist(np.abs(rayleigh_samples), bins=50, density=True)
plt.title("Rayleigh Fading Samples")
plt.xlabel("Amplitude")
plt.ylabel("Probability Density")
plt.show()
对比一下:
H = np.random.rayleigh(scale=1, size= N)*1e-3
如果设定的hk是实数,直接取模就行了。
# Take the absolute value to get real Rayleigh fading samples
rayleigh_samples_real = np.abs(rayleigh_samples_complex)
% Set the average power loss
average_power_loss = 10^(-3);
% Calculate the scale parameter (σ)
sigma = sqrt(average_power_loss / 2);
% Number of samples to generate
num_samples = 1000;
% Generate random samples from the Rayleigh distribution
rayleigh_samples = raylrnd(sigma, 1, num_samples);
% Plot the histogram of the generated samples
histogram(rayleigh_samples, 50); % Adjust the number of bins as needed
% Label the axes
xlabel('Rayleigh Fading');
ylabel('Frequency');
% Title for the plot
title(['Rayleigh Fading with Average Power Loss of 10^(-3), \sigma = ', num2str(sigma)]);