execute()是 java.util.concurrent.Executor接口中唯一的方法,JDK注释中的描述是“在未来的某一时刻执行命令command”,即向线程池中提交任务,在未来某个时刻执行,提交的任务必须实现Runnable接口,该提交方式不能获取返回值。下面是对execute()方法内部原理的分析,分析前先简单介绍线程池有哪些状态,在一系列执行过程中涉及线程池状态相关的判断。以下分析基于JDK 1.7
private final AtomicInteger ctl = new AtomicInteger(ctlOf(RUNNING, 0));
private static final int COUNT_BITS = Integer.SIZE - 3;
private static final int CAPACITY = (1 << COUNT_BITS) - 1;
// runState is stored in the high-order bits
private static final int RUNNING = -1 << COUNT_BITS;
private static final int SHUTDOWN = 0 << COUNT_BITS;
private static final int STOP = 1 << COUNT_BITS;
private static final int TIDYING = 2 << COUNT_BITS;
private static final int TERMINATED = 3 << COUNT_BITS;
// Packing and unpacking ctl
private static int runStateOf(int c) { return c & ~CAPACITY; }
private static int workerCountOf(int c) { return c & CAPACITY; }
private static int ctlOf(int rs, int wc) { return rs | wc; }
其中ctl这个AtomicInteger的功能很强大,其高3位用于维护线程池运行状态,低29位维护线程池中线程数量
/**
* 在未来的某个时刻执行给定的任务。
* 这个任务用一个新线程执行,或者用一个线程池中已经存在的线程执行
*
* 如果任务无法被提交执行,要么是因为这个Executor已经被shutdown关闭,
* 要么是已经达到其容量上限,任务会被当前的RejectedExecutionHandler处理
*/
public void execute(Runnable command) {
if (command == null)
throw new NullPointerException();
/*
* 任务分三步:
* 1、如果运行的线程少于corePoolSize,尝试开启一个新线程去运行command,
* command作为这个线程的第一个任务
*
* 2、如果任务成功放入队列,我们仍需要一个双重校验去确认是否应该新建一个线程
*(因为可能存在有些线程在我们上次检查后死了) 或者 从我们进入这个方法后,pool被关闭了
* 所以我们需要再次检查state,如果线程池停止了需要回滚入队列,
* 如果池中没有线程了,新开启一个线程
*
* 3、如果无法将任务入队列(可能队列满了),需要新开区一个线程(自己:往maxPoolSize发展)
* 如果失败了,说明线程池shutdown 或者 饱和了,所以我们拒绝任务
*/
int c = ctl.get();
/**
* 1、如果当前线程数少于corePoolSize
*(可能是由于addWorker()操作已经包含对线程池状态的判断,如此处没加,而入workQueue前加了)
*/
if (workerCountOf(c) < corePoolSize) {
//addWorker()成功,返回
if (addWorker(command, true))
return;
/**
* 没有成功addWorker(),再次获取c(凡是需要再次用ctl做判断时,都会再次调用ctl.get())
* 失败的原因可能是:
* 1、线程池已经shutdown,shutdown的线程池不再接收新任务
* 2、workerCountOf(c) < corePoolSize 判断后,由于并发,
* 别的线程先创建了worker线程,导致workerCount>=corePoolSize
*/
c = ctl.get();
}
/**
* 2、如果线程池RUNNING状态,且入队列成功
*/
if (isRunning(c) && workQueue.offer(command)) {
int recheck = ctl.get();//再次校验位
/**
* 再次校验放入workerQueue中的任务是否能被执行
* 1、如果线程池不是运行状态了,应该拒绝添加新任务,从workQueue中删除任务
* 2、如果线程池是运行状态,或者从workQueue中删除任务失败
*(刚好有一个线程执行完毕,并消耗了这个任务),确保还有线程执行任务(只要有一个就够了)
*/
//如果再次校验过程中,线程池不是RUNNING状态,
//并且remove(command)--workQueue.remove()成功,拒绝当前command
if (! isRunning(recheck) && remove(command))
reject(command);
//如果当前worker数量为0,通过addWorker(null, false)创建一个线程,其任务为null
//为什么只检查运行的worker数量是不是0呢?? 为什么不和corePoolSize比较呢??
//只保证有一个worker线程可以从queue中获取任务执行就行了??
//因为只要还有活动的worker线程,就可以消费workerQueue中的任务
else if (workerCountOf(recheck) == 0)
addWorker(null, false);
//第一个参数为null,说明只为新建一个worker线程,没有指定firstTask
//第二个参数为true代表占用corePoolSize,false占用maxPoolSize
}
/**
* 3、如果线程池不是running状态 或者 无法入队列
* 尝试开启新线程,扩容至maxPoolSize,如果addWork(command, false)失败了,
* 拒绝当前command
*/
else if (!addWorker(command, false))
reject(command);
}
execute(Runnable command)
参数: command 提交执行的任务,不能为空
执行流程:
通俗理解:这个过程相当于给池子里面添加水
/**
* 检查根据当前线程池的状态和给定的边界(core or maximum)是否可以创建一个新的worker
* 如果是这样的话,worker的数量做相应的调整,如果可能的话,创建一个新的worker并启动,
* 参数中的firstTask作为worker的第一个任务
* 如果方法返回false,可能因为pool已经关闭或者调用过了shutdown
* 如果线程工厂创建线程失败,也会失败,返回false
* 如果线程创建失败,要么是因为线程工厂返回null,要么是发生了OutOfMemoryError
*/
private boolean addWorker(Runnable firstTask, boolean core) {
//外层循环,负责判断线程池状态
retry:
for (;;) {
int c = ctl.get();
int rs = runStateOf(c); //状态
/**
* 线程池的state越小越是运行状态,runnbale=-1,shutdown=0,stop=1,tidying=2,terminated=3
* 1、如果线程池state已经至少是shutdown状态了
* 2、并且以下3个条件任意一个是false
* rs == SHUTDOWN
* (隐含:rs>=SHUTDOWN)false情况: 线程池状态已经超过shutdown,
* 可能是stop、tidying、terminated其中一个,即线程池已经终止
*
* firstTask == null
* (隐含:rs==SHUTDOWN)false情况:
* firstTask不为空,rs==SHUTDOWN 且 firstTask不为空,return false,
* 场景是在线程池已经shutdown后,还要添加新的任务,拒绝
*
* ! workQueue.isEmpty()
* (隐含:rs==SHUTDOWN,firstTask==null)false情况: workQueue为空,
* 当firstTask为空时是为了创建一个没有任务的线程,再从workQueue中获取任务,
* 如果workQueue已经为空,那么就没有添加新worker线程的必要了
*
* return false,即无法addWorker()
*/
if (rs >= SHUTDOWN &&
! (rs == SHUTDOWN &&
firstTask == null &&
! workQueue.isEmpty()))
return false;
//内层循环,负责worker数量+1
for (;;) {
int wc = workerCountOf(c); //worker数量
//如果worker数量>线程池最大上限CAPACITY(即使用int低29位可以容纳的最大值)
//或者( worker数量>corePoolSize 或 worker数量>maximumPoolSize ),即已经超过了给定的边界
if (wc >= CAPACITY ||
wc >= (core ? corePoolSize : maximumPoolSize))
return false;
//调用unsafe CAS操作,使得worker数量+1,成功则跳出retry循环
if (compareAndIncrementWorkerCount(c))
break retry;
//CAS worker数量+1失败,再次读取ctl
c = ctl.get(); // Re-read ctl
//如果状态不等于之前获取的state,跳出内层循环,继续去外层循环判断
if (runStateOf(c) != rs)
continue retry;
// else CAS failed due to workerCount change; retry inner loop
// else CAS失败时因为workerCount改变了,继续内层循环尝试CAS对worker数量+1
}
}
/**
* worker数量+1成功的后续操作
* 添加到workers Set集合,并启动worker线程
*/
boolean workerStarted = false;
boolean workerAdded = false;
Worker w = null;
try {
final ReentrantLock mainLock = this.mainLock;
w = new Worker(firstTask); //1、设置worker这个AQS锁的同步状态state=-1
//2、将firstTask设置给worker的成员变量firstTask
//3、使用worker自身这个runnable,调用ThreadFactory创建一个线程,并设置给worker的成员变量thread
final Thread t = w.thread;
if (t != null) {
mainLock.lock();
try {
//--------------------------------------------这部分代码是上锁的
// 当获取到锁后,再次检查
int c = ctl.get();
int rs = runStateOf(c);
//如果线程池在运行running
//且firstTask==null(可能是workQueue中仍有未执行完成的任务,
//创建没有初始任务的worker线程执行)
//worker数量-1的操作在addWorkerFailed()
if (rs < SHUTDOWN ||
(rs == SHUTDOWN && firstTask == null)) {
if (t.isAlive()) // precheck that t is startable 线程已经启动,抛非法线程状态异常
throw new IllegalThreadStateException();
workers.add(w);//workers是一个HashSet
//设置最大的池大小largestPoolSize,workerAdded设置为true
int s = workers.size();
if (s > largestPoolSize)
largestPoolSize = s;
workerAdded = true;
}
//--------------------------------------------
}
finally {
mainLock.unlock();
}
//如果往HashSet中添加worker成功,启动线程
if (workerAdded) {
t.start();
workerStarted = true;
}
}
} finally {
//如果启动线程失败
if (! workerStarted)
addWorkerFailed(w);
}
return workerStarted;
}
addWorker(Runnable firstTask, boolean core)
参数:
/**
* Worker类大体上管理着运行线程的中断状态 和 一些指标
* Worker类投机取巧的继承了AbstractQueuedSynchronizer来简化在执行任务时的获取、释放锁
* 这样防止了中断在运行中的任务,只会唤醒(中断)在等待从workQueue中获取任务的线程
* 解释:
* 为什么不直接执行execute(command)提交的command,而要在外面包一层Worker呢??
* 主要是为了控制中断
* 用什么控制??
* 用AQS锁,当运行时上锁,就不能中断,TreadPoolExecutor的shutdown()方法中断前都要获取worker锁
* 只有在等待从workQueue中获取任务getTask()时才能中断
*
* worker实现了一个简单的不可重入的互斥锁,而不是用ReentrantLock可重入锁
* 因为我们不想让在调用比如setCorePoolSize()这种线程池控制方法时可以再次获取锁(重入)
* 解释:
* setCorePoolSize()时可能会interruptIdleWorkers(),在对一个线程interrupt时会要w.tryLock()
* 如果可重入,就可能会在对线程池操作的方法中中断线程,类似方法还有:
* setMaximumPoolSize()
* setKeppAliveTime()
* allowCoreThreadTimeOut()
* shutdown()
* 此外,为了让线程真正开始后才可以中断,初始化lock状态为负值(-1),在开始runWorker()时将state置为0,而state>=0才可以中断
*
* Worker继承了AQS,实现了Runnable,说明其既是一个可运行的任务,也是一把锁(不可重入)
*/
private final class Worker extends AbstractQueuedSynchronizer implements Runnable{
final Thread thread; //利用ThreadFactory和 Worker这个Runnable创建的线程对象
Runnable firstTask;
volatile long completedTasks;
Worker(Runnable firstTask) {
//设置AQS的同步状态private volatile int state,是一个计数器,大于0代表锁已经被获取
setState(-1);
// 在调用runWorker()前,禁止interrupt中断,
//在interruptIfStarted()方法中会判断 getState()>=0
this.firstTask = firstTask;
this.thread = getThreadFactory().newThread(this);
//根据当前worker创建一个线程对象
//当前worker本身就是一个runnable任务,也就是不会用参数的firstTask创建线程,
//而是调用当前worker.run()时调用firstTask.run()
}
public void run() {
runWorker(this);
//runWorker()是ThreadPoolExecutor的方法
}
// Lock methods
// The value 0 represents the unlocked state. 0代表“没被锁定”状态
// The value 1 represents the locked state. 1代表“锁定”状态
protected boolean isHeldExclusively() {
return getState() != 0;
}
/**
* 尝试获取锁
* 重写AQS的tryAcquire(),AQS本来就是让子类来实现的
*/
protected boolean tryAcquire(int unused) {
//尝试一次将state从0设置为1,即“锁定”状态,
//但由于每次都是state 0->1,而不是+1,那么说明不可重入
//且state==-1时也不会获取到锁
if (compareAndSetState(0, 1)) {
setExclusiveOwnerThread(Thread.currentThread());
//设置exclusiveOwnerThread=当前线程
return true;
}
return false;
}
/**
* 尝试释放锁
* 不是state-1,而是置为0
*/
protected boolean tryRelease(int unused) {
setExclusiveOwnerThread(null);
setState(0);
return true;
}
public void lock() { acquire(1); }
public boolean tryLock() { return tryAcquire(1); }
public void unlock() { release(1); }
public boolean isLocked() { return isHeldExclusively(); }
/**
* 中断(如果运行)
* shutdownNow时会循环对worker线程执行
* 且不需要获取worker锁,即使在worker运行时也可以中断
*/
void interruptIfStarted() {
Thread t;
//如果state>=0、t!=null、且t没有被中断
//new Worker()时state==-1,说明不能中断
if (getState() >= 0 && (t = thread) != null && !t.isInterrupted()) {
try {
t.interrupt();
} catch (SecurityException ignore) {
}
}
}
}
Worker类
相当于这个人在进行打水操作,然后有另一个人来了,但是这个人打水操作不能被打断,相当于加锁操作
Worker类本身既实现了Runnable,又继承了AbstractQueuedSynchronizer(以下简称AQS),所以其既是一个可执行的任务,又可以达到锁的效果
new Worker()
1、将AQS的state置为-1,在runWoker()前不允许中断
2、待执行的任务会以参数传入,并赋予firstTask
3、用Worker这个Runnable创建Thread
之所以Worker自己实现Runnable,并创建Thread,在firstTask外包一层,是因为要通过Worker控制中断,而firstTask这个工作任务只是负责执行业务
Worker控制中断主要有以下几方面:
Worker和Task的区别:
Worker是线程池中的线程,而Task虽然是runnable,但是并没有真正执行,只是被Worker调用了run方法,后面会看到这部分的实现。(感觉类似于start()和run()方法)。
/**
* 重复的从队列中获取任务并执行,同时应对一些问题:
*
* 1、我们可能使用一个初始化任务开始,即firstTask为null
* 然后只要线程池在运行,我们就从getTask()获取任务
* 如果getTask()返回null,则worker由于改变了线程池状态或参数配置而退出
* 其它退出因为外部代码抛异常了,这会使得completedAbruptly为true,这会导致在processWorkerExit()方法中替换当前线程
*
* 2在任何任务执行之前,都需要对worker加锁去防止在任务运行时,其它的线程池中断操作
* clearInterruptsForTaskRun保证除非线程池正在stoping,线程不会被设置中断标示
*
* 3.每个任务执行前会调用beforeExecute(),其中可能抛出一个异常,这种情况下会导致线程die(跳出循环,且completedAbruptly==true),没有执行任务
* 因为beforeExecute()的异常没有cache住,会上抛,跳出循环
*
* 4. 假定beforeExecute()正常完成,我们执行任务
* 汇总任何抛出的异常并发送给afterExecute(task, thrown)
* 因为我们不能在Runnable.run()方法中重新上抛Throwables,我们将Throwables包装到Errors上抛(会到线程的UncaughtExceptionHandler去处理)
* 任何上抛的异常都会导致线程die
*
* 5. 任务执行结束后,调用afterExecute(),也可能抛异常,也会导致线程die
* 根据JLS Sec 14.20,这个异常(finally中的异常)会生效
*/
final void runWorker(Worker w) {
Thread wt = Thread.currentThread();
Runnable task = w.firstTask;
w.firstTask = null;
w.unlock(); // allow interrupts
// new Worker()是state==-1,此处是调用Worker类的tryRelease()方法,
// 将state置为0, 而interruptIfStarted()中只有state>=0才允许调用中断
boolean completedAbruptly = true;
//是否“突然完成”,如果是由于异常导致的进入finally,那么completedAbruptly==true就是突然完成的
try {
/**
* 如果task不为null,或者从阻塞队列中getTask()不为null
*/
while (task != null || (task = getTask()) != null) {
w.lock();
//上锁,不是为了防止并发执行任务,为了在shutdown()时不终止正在运行的worker
/**
* clearInterruptsForTaskRun操作
* 确保只有在线程stoping时,才会被设置中断标示,否则清除中断标示
* 1、如果线程池状态>=stop,且当前线程没有设置中断状态,wt.interrupt()
* 2、如果一开始判断线程池状态=stop
* 是,再次设置中断标示,wt.interrupt()
* 否,不做操作,清除中断标示后进行后续步骤
*/
if ((runStateAtLeast(ctl.get(), STOP) ||
(Thread.interrupted() &&
runStateAtLeast(ctl.get(), STOP))) &&
!wt.isInterrupted())
wt.interrupt(); //当前线程调用interrupt()中断
try {
//执行前(子类实现)
beforeExecute(wt, task);
Throwable thrown = null;
try {
task.run();
} catch (RuntimeException x) {
thrown = x;
throw x;
} catch (Error x) {
thrown = x;
throw x;
} catch (Throwable x) {
thrown = x;
throw new Error(x);
} finally {
//执行后(子类实现)
afterExecute(task, thrown);
//这里就考验catch和finally的执行顺序了,因为要以thrown为参数
}
} finally {
task = null; //task置为null
w.completedTasks++; //完成任务数+1
w.unlock(); //解锁
}
}
completedAbruptly = false;
} finally {
//处理worker的退出
processWorkerExit(w, completedAbruptly);
}
}
}
上锁,不是为了防止并发执行任务,为了在shutdown()时不终止正在运行的worker
相当于拿水的动作要发生了
runWorker(Worker w)执行流程:
![在这里插入图片描述](https://img-blog.csdnimg.cn/20210720170547689.png?x-oss-process=image/watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L3FxXzUyODQwODA1,size_16,color_FFFFFF,t_70)
/**
*以下情况会返回null
* 1. 超过了maximumPoolSize设置的线程数量(因为调用了setMaximumPoolSize())
* 2. 线程池被stop
* 3. 线程池被shutdown,并且workQueue空了
* 4. 线程等待任务超时
*
* @return 返回null表示这个worker要结束了,这种情况下workerCount-1
*/
private Runnable getTask() {
boolean timedOut = false; // Did the last poll() time out?
/**
* 外层循环
* 用于判断线程池状态
*/
retry:
for (;;) {
int c = ctl.get();
int rs = runStateOf(c);
// Check if queue empty only if necessary.
/**
* 对线程池状态的判断,两种情况会workerCount-1,并且返回null
* 线程池状态为shutdown,且workQueue为空(反映了shutdown状态的线程池还是要执行workQueue中剩余的任务的)
* 线程池状态为stop(shutdownNow()会导致变成STOP)(此时不用考虑workQueue的情况)
*/
if (rs >= SHUTDOWN && (rs >= STOP || workQueue.isEmpty())) {
decrementWorkerCount(); //循环的CAS减少worker数量,直到成功
return null;
}
boolean timed; // Are workers subject to culling?
// 是否需要定时从workQueue中获取
/**
* 内层循环
* 要么break去workQueue获取任务
* 要么超时了,worker count-1
*/
for (;;) {
int wc = workerCountOf(c);
timed = allowCoreThreadTimeOut || wc > corePoolSize; //allowCoreThreadTimeOut默认为false
//如果allowCoreThreadTimeOut为true,说明corePoolSize和maximum都需要定时
//如果当前执行线程数
// 跳出循环,开始从workQueue获取任务
if (wc <= maximumPoolSize && ! (timedOut && timed))
break;
/**
* 如果到了这一步,说明要么线程数量超过了maximumPoolSize(可能maximumPoolSize被修改了)
* 要么既需要计时timed==true,也超时了timedOut==true
* worker数量-1,减一执行一次就行了,然后返回null,在runWorker()中会有逻辑减少worker线程
* 如果本次减一失败,继续内层循环再次尝试减一
*/
if (compareAndDecrementWorkerCount(c))
return null;
//如果减数量失败,再次读取ctl
c = ctl.get(); // Re-read ctl
//如果线程池运行状态发生变化,继续外层循环
//如果状态没变,继续内层循环
if (runStateOf(c) != rs)
continue retry;
// else CAS failed due to workerCount change; retry inner loop
}
try {
//poll() - 使用 LockSupport.parkNanos(this, nanosTimeout)
// 挂起一段时间,interrupt()时不会抛异常,但会有中断响应
//take() - 使用 LockSupport.park(this) 挂起,interrupt()时不会抛异常,但会有中断响应
Runnable r = timed ?
workQueue.poll(keepAliveTime, TimeUnit.NANOSECONDS) :
//大于corePoolSize
workQueue.take();
//小于等于corePoolSize
//如获取到了任务就返回
if (r != null)
return r;
//没有返回,说明超时,那么在下一次内层循环时会进入worker count减一的步骤
timedOut = true;
}
/**
* blockingQueue的take()阻塞使用LockSupport.park(this)进入wait状态的,
* 对LockSupport.park(this)进行interrupt不会抛异常,但还是会有中断响应
* 但AQS的ConditionObject的await()对中断状态做了判断,会报告中断状态
* reportInterruptAfterWait(interruptMode)
* 就会上抛InterruptedException,在此处捕获,重新开始循环
* 如果是由于shutdown()等操作导致的空闲worker中断响应,在外层循环判断状态时,可能return null
*/
catch (InterruptedException retry) {
timedOut = false; //响应中断,重新开始,中断状态会被清除
}
}
}
getTask()执行流程:
相当于从哪拿水 你拿水的动作发生在拿一块区域
首先判断是否可以满足从workQueue中获取任务的条件,不满足return null
A、线程池状态是否满足:
(a)shutdown状态 + workQueue为空 或 stop状态,都不满足,因为被shutdown后还是要执行workQueue剩余的任务,但workQueue也为空,就可以退出了
(b)stop状态,shutdownNow()操作会使线程池进入stop,此时不接受新任务,中断正在执行的任务,workQueue中的任务也不执行了,故return null返回
B、线程数量是否超过maximumPoolSize 或 获取任务是否超时
(a)线程数量超过maximumPoolSize可能是线程池在运行时被调用了setMaximumPoolSize()被改变了大小,否则已经addWorker()成功不会超过maximumPoolSize
(b)如果 当前线程数量>corePoolSize,才会检查是否获取任务超时,这也体现了当线程数量达到maximumPoolSize后,如果一直没有新任务,会逐渐终止worker线程直到corePoolSize
如果满足获取任务条件,根据是否需要定时获取调用不同方法:
A、workQueue.poll():如果在keepAliveTime时间内,阻塞队列还是没有任务,返回null
B、workQueue.take():如果阻塞队列为空,当前线程会被挂起等待;当队列中有任务加入时,线程被唤醒,take方法返回任务
在阻塞从workQueue中获取任务时,可以被interrupt()中断,代码中捕获了InterruptedException,重置timedOut为初始值false,再次执行第1步中的判断,满足就继续获取任务,不满足return null,会进入worker退出的流程
private void processWorkerExit(Worker w, boolean completedAbruptly) {
/**
* 1、worker数量-1
* 如果是突然终止,说明是task执行时异常情况导致,即run()方法执行时发生了异常,
*那么正在工作的worker线程数量需要-1
* 如果不是突然终止,说明是worker线程没有task可执行了,不用-1,因为已经在getTask()方法中-1了
*/
if (completedAbruptly)
// If abrupt, then workerCount wasn't adjusted 代码和注释正好相反啊
decrementWorkerCount();
/**
* 2、从Workers Set中移除worker
*/
final ReentrantLock mainLock = this.mainLock;
mainLock.lock();
try {
completedTaskCount += w.completedTasks; //把worker的完成任务数加到线程池的完成任务数
workers.remove(w); //从HashSet中移除
} finally {
mainLock.unlock();
}
/**
* 3、在对线程池有负效益的操作时,都需要“尝试终止”线程池
* 主要是判断线程池是否满足终止的状态
* 如果状态满足,但还有线程池还有线程,尝试对其发出中断响应,使其能进入退出流程
* 没有线程了,更新状态为tidying->terminated
*/
tryTerminate();
/**
* 4、是否需要增加worker线程
* 线程池状态是running 或 shutdown
* 如果当前线程是突然终止的,addWorker()
* 如果当前线程不是突然终止的,但当前线程数量 < 要维护的线程数量,addWorker()
* 故如果调用线程池shutdown(),直到workQueue为空前,线程池都会维持corePoolSize个线程,然后再逐渐销毁这corePoolSize个线程
*/
int c = ctl.get();
//如果状态是running、shutdown,即tryTerminate()没有成功终止线程池,尝试再添加一个worker
if (runStateLessThan(c, STOP)) {
//不是突然完成的,即没有task任务可以获取而完成的,计算min,并根据当前worker数量判断是否需要addWorker()
if (!completedAbruptly) {
int min = allowCoreThreadTimeOut ? 0 : corePoolSize; //allowCoreThreadTimeOut默认为false,即min默认为corePoolSize
//如果min为0,即不需要维持核心线程数量,且workQueue不为空,至少保持一个线程
if (min == 0 && ! workQueue.isEmpty())
min = 1;
//如果线程数量大于最少数量,直接返回,否则下面至少要addWorker一个
if (workerCountOf(c) >= min)
return; // replacement not needed
}
//添加一个没有firstTask的worker
//只要worker是completedAbruptly突然终止的,或者线程数量小于要维护的数量,就新添一个worker线程,即使是shutdown状态
addWorker(null, false);
}
}
相当于水拿完了 ,这个动作结束了且要把这个动作给结束了,拿完一个走一个人,要考虑线程并发问题
processWorkerExit(Worker w, boolean completedAbruptly)
参数:
worker: 要结束的worker
completedAbruptly: 是否突然完成(是否因为异常退出)
执行流程: