算法-二叉树-简单-二叉树的最大和最小深度

记录一下算法题的学习7

二叉树的最大深度

题目:给定一个二叉树 root ,返回其最大深度。

二叉树的 最大深度 是指从根节点到最远叶子节点的最长路径上的节点数。

算法-二叉树-简单-二叉树的最大和最小深度_第1张图片

输入:root = [3,9,20,null,null,15,7]
输出:3

示例分析:

这里根节点为3,叶子节点是什么呢?---->是指没有子节点的节点,记录从根节点到最远叶子节点的最长路径上的节点数,那么就是3-20-15,或者3-20-7,一共是3个节点数

怎么体现呢?

深度优先搜索代码展示:

class Solution {
    public int maxDepth(TreeNode root) {
      //首先输入根节点为空的情况下,二叉树就不存在  
      if(root==null){
          return 0;
      }
      //判断输入根节点不为空,存在二叉树
      else{
          int leftDepth=maxDepth(root.left); //得到根节点root左子树的最长路径上的节点数
          int rightDepth=maxDepth(root.right);//得到根节点root右子树的最长路径上的节点数
          return Math.max(leftDepth,rightDepth)+1;//由题目可知,还需加上代表根节点的节点数1
      }
    }
}

广度优先搜索代码展示:

这里进行回忆记录Queue?

  • Queue是java中实现队列的接口,它总共有6个方法,我们一般只用其中3个就可以了。
  • Queue的实现类有LinkedList和PriorityQueue。最常用的实现类是LinkedList。

方法

作用 区别

add()

压入元素(添加) 相同:未超出容量,从队尾压入元素,返回压入的那个元素。
区别:在超出容量时,add()方法会对抛出异常,offer()返回false
offer() 压入元素(添加)
remove() 弹出元素(删除) 相同:容量大于0的时候,删除并返回队头被删除的那个元素。
区别:在容量为0的时候,remove()会抛出异常,poll()返回false
poll() 弹出元素(删除)
element() 获取对头元素 相同:容量大于0的时候,都返回队头元素。但是不删除。
区别:容量为0的时候,element()会抛出异常,peek()返回null。
peek() 获取对头元素
class Solution {
    public int maxDepth(TreeNode root) {
      //首先输入根节点为空的情况下,二叉树就不存在  
      if(root==null){
          return 0;
      }
      Queue queue=new LinkedList<>();//初始化队列queue
      queue.offer(root);//将根节点加入队列中
      int result=0;//初始化结果
      while(!queue.isEmpty()){ //队列不为空的情况,即刚才加入的根节点!=null
          int size=queue.size();//取出当前队列的长度
          while(size-->0){//取出相同数量的节点数进行遍历
              TreeNode node=queue.poll();
              if(node.left!=null){
                  queue.offer(node.left);
              }
              if(node.right!=null){
                  queue.offer(node.right);
              }
          }
          result++; 
      }
      return result;
    }
}

二叉树的最小深度

题目:给定一个二叉树,找出其最小深度。最小深度是从根节点到最近叶子节点的最短路径上的节点数量。

算法-二叉树-简单-二叉树的最大和最小深度_第2张图片

输入:root = [3,9,20,null,null,15,7]
输出:2
输入:root = [2,null,3,null,4,null,5,null,6]
输出:5

示例分析:

如果我们直接将二叉树的最大深度的代码,直接拿来用,就会报错,因为我们忽略了还有一种情况(左孩子和右孩子有一个为空的情况,但不确定是哪一个,我们返回leftDepth+rightDepth+1)在求二叉树的最小深度中。

 深度优先搜索代码展示:

class Solution {
    public int minDepth(TreeNode root) {
      //首先输入根节点为空的情况下,二叉树就不存在  
      if(root==null){
          return 0;
      }
      //1.左孩子和右孩子都为空的情况,说明到达了叶子节点,直接返回1
      if(root.left == null && root.right == null){
          return 1;
      }
      int leftDepth=minDepth(root.left); //得到根节点root左子树的最短路径上的节点数
      int rightDepth=minDepth(root.right);//得到根节点root右子树的最短路径上的节点数
      //2.左孩子和右孩子有一个为空的情况,但不确定是哪一个,我们返回leftLength+rightLength+1
      if(root.left == null || root.right == null){
          return leftDepth+rightDepth+1;
      //3 左孩子和右孩子都不为空的情况,那就比较出两者之间更小的值,然后再加一,得到最小深度
      }else{
          return Math.min(leftDepth,rightDepth)+1;//由题目可知,还需加上代表根节点的节点数1
      } 
    }
}

广度优先搜素代码展示:

class Solution {
    public int minDepth(TreeNode root) {
      //首先输入根节点为空的情况下,二叉树就不存在  
      if(root==null){
          return 0;
      }
      Queue queue = new LinkedList<>();
      queue.offer(root);
      int result=1;
        while (!queue.isEmpty()) {
            int size=queue.size();
            for(int i=0;i

注意这里必须这样写

算法-二叉树-简单-二叉树的最大和最小深度_第3张图片

不能直接写成for(int i=0;ifor(int i=queue.size()-1;i>=0;i--)。

 

你可能感兴趣的:(算法篇,算法,数据结构,leetcode)