基于kafka模拟生产者和消费者

zookeeper的启动脚本:

#!/bin/sh
echo "start zookeeper server..."

hosts="hadoop0300 hadoop0301 hadoop0302"

for host in $hosts
do
  ssh $host  "source /etc/profile; /root/app/zookeeper-3.4.7/bin/zkServer.sh start"
done

kafka的启动脚本:

#!/bin/bash

for host in hadoop0300 hadoop0301 hadoop0302
do
echo $host
ssh root@$host "source /etc/profile;/usr/local/kafka_2.11-0.9.0.1/bin/kafka-server-start.sh -daemon /usr/local/kafka_2.11-0.9.0.1/config/server.properties"
done

//时间同步
ntpdate -u ntp.api.bz

//启动kafka
/usr/local/kafka_2.11-0.9.0.1/bin/kafka-server-start.sh -daemon /usr/local/kafka_2.11-0.9.0.1/config/server.properties

//创建一个topci为test
/usr/local/kafka_2.11-0.9.0.1/bin./kafka-topics.sh --create --zookeeper localhost:2181 --replication-factor 1 --partitions 1 --topic test

//查看当前集群里面所有的topic
/usr/local/kafka_2.11-0.9.0.1/bin/kafka-topics.sh --list --zookeeper 192.168.88.130:2181

//通过shell命令发送消息(模拟生产者)
/usr/local/kafka_2.11-0.9.0.1/bin/kafka-console-producer.sh --broker-list 192.168.88.130:9092 --topic test

//通过shell消费消息(模拟消费者,另一客户端)
/usr/local/kafka_2.11-0.9.0.1/bin/kafka-console-consumer.sh --zookeeper 192.168.88.130:2181 --from-beginning --topic test

//如果报的是下面的错
kafka.common.FailedToSendMessageException Failed to send messages after 3 tries
解决:将server.properties里面的host.name该为自己的ip地址

 

ProducerDemo模拟生产者:

import kafka.javaapi.producer.Producer;
import kafka.producer.KeyedMessage;
import kafka.producer.ProducerConfig;

import java.util.Properties;

public class ProducerDemo {
    public static void main(String[] args) {
        //创建producer配置信息,发到哪里去
        Properties pro = new Properties();
        //指定消息发送到kafka集群
        pro.put("metadata.broker.list","192.168.88.130:9092,192.168.88.131:9092,192.168.88.132:9092");
        //指定消息序列化方式
        pro.put("serializer.class","kafka.serializer.StringEncoder");
        //配置信息包装
        ProducerConfig config = new ProducerConfig(pro);
        //1.创建producer
        Producer producer = new Producer(config);

        for (int i = 0; i <= 100; i++) {
            producer.send(new KeyedMessage("test","message"+i));
        }
    }
}
ConsumerDemo模拟消费者:

import kafka.consumer.Consumer;
import kafka.consumer.ConsumerConfig;
import kafka.consumer.KafkaStream;
import kafka.message.MessageAndMetadata;
import java.util.HashMap;
import java.util.List;
import java.util.Map;
import java.util.Properties;

public class ConsumerDemo {

    //指定消费的主题(哪个类别的消息)
    private static final String topic = "test";
    //指定线程个数
    private static final Integer thread = 2;

    public static void main(String[] args) {
        //创建消费者的配置信息
        Properties pro = new Properties();
        //指定连接zookeeper的消息
        pro.put("zookeeper.connect","192.168.88.130:2181,192.168.88.131:2181,192.168.88.132:2181");
        //消费者是以组的形式消费,指定消费组信息
        pro.put("group.id","testGroup");
        //配置消费消息的开始位置,从偏移量为0的开始消费,smallest代表从topic的第一条消息开始消费
        //对应的largest:代表从我们的消费者启动之后该topic下新产生的消息开始消费
        pro.put("auto.offset.reset","smallest");
        //
        ConsumerConfig config = new ConsumerConfig(pro);
        //创建消费者
        kafka.javaapi.consumer.ConsumerConnector consumer = Consumer.createJavaConsumerConnector(config);
        //消费者可以消费多个topic数据,创建一个map存放top信息
        Map topicMaps = new HashMap();
        topicMaps.put(topic,thread);
        //创建信息流
        Map>> consumerMap=
        consumer.createMessageStreams(topicMaps);
        //获取topic信息
        List> kafkaStreams = consumerMap.get(topic);
        //一直循环kafka拉取消息
        for(final KafkaStream kafkaStream: kafkaStreams){
            //创建一个线程,消费消息
            new Thread(new Runnable() {
                @Override
                public void run() {
                    //循环读取每一条消息
                    for(MessageAndMetadata msg:kafkaStream){
                        //读到一条消息
                        String message =new String(msg.message());
                        System.out.println(message);
                    }
                }
            }).start();
        }
    }
}

 

 

你可能感兴趣的:(大数据之spark一些例子)