JUC并发编程:共享模型之管程

JUC并发编程:共享模型之管程

  • 0. 整体目录
  • 1. 共享问题
    • 1.1 举例共享带来的问题
    • 1.2 Java代码的体现
    • 1.3 问题分析
    • 1.4 临界区 Critical Section
    • 1.5 竞态条件 Race Condition
  • 2. synchronized
    • 2.1 互斥
    • 2.2 synchronized语法
    • 2.3 方法上的synchronized
  • 3. 所谓的“线程八锁”
  • 4. 变量的线程安全分析
    • 4.1 成员变量和静态变量是否线程安全?
    • 4.2 局部变量是否线程安全?
    • 4.3 局部变量线程安全分析
    • 4.4 成员变量的例子
    • 4.5 常见线程安全类
      • 4.5.1 线程安全类方法的组合
      • 4.5.2 不可变类线程安全性
      • 4.5.3 实际例子分析
  • 5. Monitor
  • 附录

0. 整体目录

  • 共享问题
  • synchronized
  • 线程安全分析
  • Monitor
  • wait/notify
  • 线程状态转换
  • 活跃性
  • Lock

课程地址

1. 共享问题

1.1 举例共享带来的问题

  • 老王(操作系统)有一个功能强大的算盘(CPU),现在想把它租出去,赚一点外快

  • JUC并发编程:共享模型之管程_第1张图片

  • 小南、小女(线程)来使用这个算盘来进行一些计算,并按照时间给老王支付费用

  • 但小南不能一天24小时使用算盘,他经常要小憩一会(sleep),又或是去吃饭上厕所(阻塞 io 操作),有时还需要一根烟,没烟时思路全无(wait)这些情况统称为(阻塞)

  • JUC并发编程:共享模型之管程_第2张图片

  • 在这些时候,算盘没利用起来(不能收钱了),老王觉得有点不划算

  • 另外,小女也想用用算盘,如果总是小南占着算盘,让小女觉得不公平

  • 于是,老王灵机一动,想了个办法 [ 让他们每人用一会,轮流使用算盘 ]

  • 这样,当小南阻塞的时候,算盘可以分给小女使用,不会浪费,反之亦然

  • 最近执行的计算比较复杂,需要存储一些中间结果,而学生们的脑容量(工作内存)不够,所以老王申请了一个笔记本(主存),把一些中间结果先记在本上

  • 计算流程是这样的

  • JUC并发编程:共享模型之管程_第3张图片

  • 但是由于分时系统,有一天还是发生了事故

  • 小南刚读取了初始值 0 做了个 +1 运算,还没来得及写回结果

  • 老王说 [ 小南,你的时间到了,该别人了,记住结果走吧 ],于是小南念叨着 [ 结果是1,结果是1…] 不甘心地到一边待着去了(上下文切换)

  • 老王说 [ 小女,该你了 ],小女看到了笔记本上还写着 0 做了一个 -1 运算,将结果 -1 写入笔记本

  • 这时小女的时间也用完了,老王又叫醒了小南:[小南,把你上次的题目算完吧],小南将他脑海中的结果 1 写入了笔记本

  • JUC并发编程:共享模型之管程_第4张图片

  • 小南和小女都觉得自己没做错,但笔记本里的结果是 1 而不是 0

1.2 Java代码的体现

两个线程对初始值为 0 的静态变量一个做自增,一个做自减,各做 5000 次,结果是 0 吗?

static int counter = 0;
public static void main(String[] args) throws InterruptedException {
    Thread t1 = new Thread(() -> {
        for (int i = 0; i < 5000; i++) {
            counter++;
        }
    }, "t1");
    
    Thread t2 = new Thread(() -> {
        for (int i = 0; i < 5000; i++) {
            counter--;
        }
    }, "t2");
    
    t1.start();
    t2.start();
    t1.join();
    t2.join();
    
    log.debug("{}",counter);
}

结果: -2048
每次都不一样

1.3 问题分析

        以上的结果可能是正数、负数、零。为什么呢?因为 Java 中对静态变量的自增,自减并不是原子操作,要彻底理解,必须从字节码来进行分析

        例如对于 i++ 而言(i 为静态变量),实际会产生如下的 JVM 字节码指令:

getstatic i // 获取静态变量i的值
iconst_1 // 准备常量1
iadd // 自增
putstatic i // 将修改后的值存入静态变量i

        而 Java 的内存模型如下,完成静态变量的自增,自减需要在主存和工作内存中进行数据交换:

JUC并发编程:共享模型之管程_第5张图片

        如果是单线程以上 8 行代码是顺序执行(不会交错)没有问题:

JUC并发编程:共享模型之管程_第6张图片

        但多线程下这 8 行代码可能交错运行:
        出现负数的情况:

JUC并发编程:共享模型之管程_第7张图片

        出现正数的情况:

JUC并发编程:共享模型之管程_第8张图片

1.4 临界区 Critical Section

临界区(Critical Section):指的是一个访问共享资源的程序片段,而这些共享资源又无法同时被多个线程访问的特性。当有线程进入临界区段时,其他线程或是进程必须等待,有一些同步的机制必须在临界区段的进入点与离开点实现,以确保这些共享资源是被互斥获得使用的。

  • 一个程序运行多个线程本身是没有问题的
  • 问题出在多个线程访问共享资源
    1. 多个线程读共享资源其实也没有问题
    2. 在多个线程对共享资源读写操作时发生指令交错,就会出现问题
  • 一段代码块内如果存在对共享资源的多线程读写操作,称这段代码块为临界区

例如,下面代码中的临界区

static int counter = 0;

static void increment()
// 临界区
{
    counter++; 
}

static void decrement()
// 临界区
{
    counter--; 
}

1.5 竞态条件 Race Condition

多个线程在临界区内执行,由于代码的执行序列不同而导致结果无法预测,称之为发生了竞态条件

2. synchronized

2.1 互斥

   为了避免临界区的竞态条件发生,有多种手段可以达到目的。

  • 阻塞式的解决方案:synchronizedLock
  • 非阻塞式的解决方案:原子变量

        本次课使用阻塞式的解决方案:synchronized,来解决上述问题,即俗称的【对象锁】,它采用互斥的方式让同一时刻至多只有一个线程能持有【对象锁】,其它线程再想获取这个【对象锁】时就会阻塞住。这样就能保证拥有锁的线程可以安全的执行临界区内的代码,不用担心线程上下文切换

注意:
    虽然 java 中互斥和同步都可以采用 synchronized 关键字来完成,但它们还是有区别的:

  • 互斥是保证临界区的竞态条件发生,同一时刻只能有一个线程执行临界区代码。
  • 同步是由于线程执行的先后、顺序不同、需要一个线程等待其它线程运行到某个点。

2.2 synchronized语法

synchronized(对象) // 线程1, 线程2(blocked)
{
 	临界区
}

解决

static int counter = 0;
static final Object room = new Object();

public static void main(String[] args) throws InterruptedException {
    Thread t1 = new Thread(() -> {
        for (int i = 0; i < 5000; i++) {
            synchronized (room) {
                counter++;
            }
        }
    }, "t1");
    
    Thread t2 = new Thread(() -> {
        for (int i = 0; i < 5000; i++) {
            synchronized (room) {
                counter--;
            }
        }
    }, "t2");
    
    t1.start();
    t2.start();
    t1.join();
    t2.join();
    log.debug("{}",counter);
}

JUC并发编程:共享模型之管程_第9张图片


你可以做这样的类比:

  • synchronized(对象) 中的对象,可以想象为一个房间(room),有唯一入口(门)房间只能一次进入一人进行计算,线程 t1,t2 想象成两个人

  • 当线程 t1 执行到 synchronized(room) 时就好比 t1 进入了这个房间,并锁住了门拿走了钥匙,在门内执行count++ 代码

  • 这时候如果 t2 也运行到了 synchronized(room) 时,它发现门被锁住了,只能在门外等待,发生了上下文切换,阻塞住了

  • 这中间即使 t1 的 cpu 时间片不幸用完,被踢出了门外(不要错误理解为锁住了对象就能一直执行下去哦),这时门还是锁住的,t1 仍拿着钥匙,t2 线程还在阻塞状态进不来,只有下次轮到 t1 自己再次获得时间片时才能开门进入

  • 当 t1 执行完 synchronized{} 块内的代码,这时候才会从 obj 房间出来并解开门上的锁,唤醒 t2 线程把钥匙给他。t2 线程这时才可以进入 obj 房间,锁住了门拿上钥匙,执行它的 count-- 代码.

synchronized 实际是用对象锁保证了临界区内代码的原子性,临界区内的代码对外是不可分割的,不会被线程切换所打断。
原子性的操作是不可被中断的一个或一系列操作。

面向对象的改进


class Room {
    int value = 0;
    public void increment() {
        synchronized (this) {
            value++;
        }
    }
    public void decrement() {
        synchronized (this) {
            value--;
        }
    }
    public int get() {
        synchronized (this) {
            return value;
        }
    }
}

@Slf4j
public class Test1 {

    public static void main(String[] args) throws InterruptedException {
        Room room = new Room();
        Thread t1 = new Thread(() -> {
            for (int j = 0; j < 5000; j++) {
                room.increment();
            }
        }, "t1");
        
        Thread t2 = new Thread(() -> {
            for (int j = 0; j < 5000; j++) {
                room.decrement();
            }
        }, "t2");
        
        t1.start();
        t2.start();
        t1.join();
        t2.join();
        
        log.debug("count: {}" , room.get());
    }
}

2.3 方法上的synchronized

class Test{
    public synchronized void test() {

    }
}
等价于
class Test{
    public void test() {
        synchronized(this) {

        }
    }
}
class Test{
    public synchronized static void test() {
        
    }
}
等价于
class Test{
    public static void test() {
        synchronized(Test.class) {

        }
    }
}

不加 synchronized 的方法
不加 synchronzied 的方法就好比不遵守规则的人,不去老实排队(好比翻窗户进去的)

3. 所谓的“线程八锁”

其实就是考察synchronzied锁住的是哪个对象

情况1:12 或 21

@Slf4j(topic = "c.Number")
class Number{
    public synchronized void a() {
        log.debug("1");
    }
    public synchronized void b() {
        log.debug("2");
    }
}

public static void main(String[] args) {
    Number n1 = new Number();
    new Thread(()->{ n1.a(); }).start();
    new Thread(()->{ n1.b(); }).start();
}

情况2:1s后12,或 2 1s后 1

@Slf4j(topic = "c.Number")
class Number{
    public synchronized void a() {
        sleep(1);
        log.debug("1");
    }
    public synchronized void b() {
        log.debug("2");
    }
}

public static void main(String[] args) {
    Number n1 = new Number();
    new Thread(()->{ n1.a(); }).start();
    new Thread(()->{ n1.b(); }).start();
}

情况3:3 1s 12 或 23 1s 1 或 32 1s 1

@Slf4j(topic = "c.Number")
class Number{
    public synchronized void a() {
        sleep(1);
        log.debug("1");
    }
    public synchronized void b() {
        log.debug("2");
    }
    public void c() {
        log.debug("3");
    }
}

public static void main(String[] args) {
    Number n1 = new Number();
    new Thread(()->{ n1.a(); }).start();
    new Thread(()->{ n1.b(); }).start();
    new Thread(()->{ n1.c(); }).start();
}

情况4:2 1s 后 1

@Slf4j(topic = "c.Number")
class Number{
    public synchronized void a() {
        sleep(1);
        log.debug("1");
    }
    public synchronized void b() {
        log.debug("2");
    }
}

public static void main(String[] args) {
    Number n1 = new Number();
    Number n2 = new Number();
    new Thread(()->{ n1.a(); }).start();
    new Thread(()->{ n2.b(); }).start();
}

情况5:2 1s 后 1

@Slf4j(topic = "c.Number")
class Number{
    public static synchronized void a() {
        sleep(1);
        log.debug("1");
    }
    public synchronized void b() {
        log.debug("2");
    }
}

public static void main(String[] args) {
    Number n1 = new Number();
    new Thread(()->{ n1.a(); }).start();
    new Thread(()->{ n1.b(); }).start();
}

情况6:1s 后12, 或 2 1s后 1

@Slf4j(topic = "c.Number")
class Number{
    public static synchronized void a() {
        sleep(1);
        log.debug("1");
    }
    public static synchronized void b() {
        log.debug("2");
    }
}

public static void main(String[] args) {
    Number n1 = new Number();
    new Thread(()->{ n1.a(); }).start();
    new Thread(()->{ n1.b(); }).start();
}

情况7:2 1s 后 1

@Slf4j(topic = "c.Number")
class Number{
    public static synchronized void a() {
        sleep(1);
        log.debug("1");
    }
    public synchronized void b() {
        log.debug("2");
    }
}

public static void main(String[] args) {
    Number n1 = new Number();
    Number n2 = new Number();
    new Thread(()->{ n1.a(); }).start();
    new Thread(()->{ n2.b(); }).start();
}

情况8:1s 后12, 或 2 1s后 1

@Slf4j(topic = "c.Number")
class Number{
    public static synchronized void a() {
        sleep(1);
        log.debug("1");
    }
    public static synchronized void b() {
        log.debug("2");
    }
}

public static void main(String[] args) {
    Number n1 = new Number();
    Number n2 = new Number();
    new Thread(()->{ n1.a(); }).start();
    new Thread(()->{ n2.b(); }).start();
}

4. 变量的线程安全分析

4.1 成员变量和静态变量是否线程安全?

  • 如果它们没有共享,则线程安全
  • 如果它们被共享了,根据它们的状态是否能够改变,又分两种情况
    • 如果只有读操作,则线程安全
    • 如果有读写操作,则这段代码是临界区,需要考虑线程安全

4.2 局部变量是否线程安全?

  • 局部变量是线程安全的
  • 但局部变量引用的对象则未必
    • 如果该对象没有逃离方法的作用访问,它是线程安全的
    • 如果该对象逃离方法的作用范围,需要考虑线程安全

4.3 局部变量线程安全分析

public static void test1() {
    int i = 10;
    i++; 
}

每个线程调用 test1() 方法时局部变量 i,会在每个线程的栈帧内存中被创建多份,因此不存在共享

public static void test1();
    descriptor: ()V
    flags: ACC_PUBLIC, ACC_STATIC
    Code:
        stack=1, locals=1, args_size=0
        0: bipush            10
        2: istore_0
        3: iinc               0, 1
        6: return
    LineNumberTable:
        line 10: 0
        line 11: 3
        line 12: 6
    LocalVariableTable:
        Start Length Slot Name Signature
            3      4     0    i   I

如图:

JUC并发编程:共享模型之管程_第10张图片

4.4 成员变量的例子

class ThreadUnsafe {
    ArrayList<String> list = new ArrayList<>();
    public void method1(int loopNumber) {
        for (int i = 0; i < loopNumber; i++) {
            // { 临界区, 会产生竞态条件
            method2();
            method3();
            // } 临界区
        }
    }
    private void method2() {
        list.add("1");
    }
    private void method3() {
        list.remove(0);
    }
}
static final int THREAD_NUMBER = 2;
static final int LOOP_NUMBER = 200;
public static void main(String[] args) {
    ThreadUnsafe test = new ThreadUnsafe();
    for (int i = 0; i < THREAD_NUMBER; i++) {
        new Thread(() -> {
            test.method1(LOOP_NUMBER);
        }, "Thread" + i).start();
    }
}

执行后出现:
Exception in thread "Thread1" java.lang.IndexOutOfBoundsException: Index: 0, Size: 0 
     at java.util.ArrayList.rangeCheck(ArrayList.java:657) 
     at java.util.ArrayList.remove(ArrayList.java:496) 
     at cn.itcast.n6.ThreadUnsafe.method3(TestThreadSafe.java:35) 
     at cn.itcast.n6.ThreadUnsafe.method1(TestThreadSafe.java:26) 
     at cn.itcast.n6.TestThreadSafe.lambda$main$0(TestThreadSafe.java:14) 
     at java.lang.Thread.run(Thread.java:748)

分析:

  • 无论哪个线程中的 method2 引用的都是同一个对象中的 list 成员变量
  • method3 与 method2 分析相同

JUC并发编程:共享模型之管程_第11张图片


将 list 修改为局部变量

class ThreadSafe {
    public final void method1(int loopNumber) {
        ArrayList<String> list = new ArrayList<>();
        for (int i = 0; i < loopNumber; i++) {
            method2(list);
            method3(list);
        }
    }
    private void method2(ArrayList<String> list) {
        list.add("1");
    }
    private void method3(ArrayList<String> list) {
        list.remove(0);
    }
}

那么就不会有上述问题了
分析:

  • list 是局部变量,每个线程调用时会创建其不同实例,没有共享
  • 而 method2 的参数是从 method1 中传递过来的,与 method1 中引用同一个对象
  • method3 的参数分析与 method2 相同
    JUC并发编程:共享模型之管程_第12张图片

方法访问修饰符带来的思考,如果把 method2 和 method3 的方法修改为 public 会不会出现线程安全问题?

  • 情况1:有其它线程调用 method2 和 method3
  • 情况2:在 情况1 的基础上,为 ThreadSafe 类添加子类,子类覆盖 method2 或 method3 方法,即
class ThreadSafe {
    public final void method1(int loopNumber) {
        ArrayList<String> list = new ArrayList<>();
        for (int i = 0; i < loopNumber; i++) {
            method2(list);
            method3(list);
        }
    }
    private void method2(ArrayList<String> list) {
        list.add("1");
    }
    private void method3(ArrayList<String> list) {
        list.remove(0);
    }
}

class ThreadSafeSubClass extends ThreadSafe{
    @Override
    public void method3(ArrayList<String> list) {
        new Thread(() -> {
            list.remove(0);
        }).start();
    }
}

4.5 常见线程安全类

  • String
  • Integer
  • StringBuffer
  • Random
  • Vector
  • Hashtable
  • java.util.concurrent 包下的类

这里说它们是线程安全的是指,多个线程调用它们同一个实例的某个方法时,是线程安全的。

Hashtable table = new Hashtable();

new Thread(()->{
    table.put("key", "value1");
}).start();

new Thread(()->{
    table.put("key", "value2");
}).start();
  • 它们的每个方法是原子的
  • 但注意它们多个方法的组合不是原子的

4.5.1 线程安全类方法的组合

分析下面代码是否线程安全?======>不安全

Hashtable table = new Hashtable();
// 线程1,线程2
if( table.get("key") == null) {
    table.put("key", value);
}

JUC并发编程:共享模型之管程_第13张图片

4.5.2 不可变类线程安全性

String、Integer 等都是不可变类,因为其内部的状态不可以改变,因此它们的方法都是线程安全的

4.5.3 实际例子分析

public class MyServlet extends HttpServlet {
    // 是否安全?  不安全
    Map<String,Object> map = new HashMap<>();
    // 是否安全?  安全
    String S1 = "...";
    // 是否安全?  安全
    final String S2 = "...";
    // 是否安全?  不安全
    Date D1 = new Date();
    // 是否安全?  不安全
    final Date D2 = new Date();

    public void doGet(HttpServletRequest request, HttpServletResponse response) {
        // 使用上述变量
    }
}

5. Monitor

课程
Monitor和对象结构-值得看
上述笔记

        管程 ( Monitor,也称为监视器) :是一种程序结构,结构内的多个子程序(对象或模块)形成的多个工作线程互斥访问共享资源。这些共享资源一般是硬件设备或一群变量。简而言之,管程是管理共享变量以及对共享变量的操作过程,使其支持并发。

附录

1.其他人笔记
2.JUC-管程
3.多线程篇-线程安全-原子性、可见性、有序性解析
4.Monitor和对象结构

你可能感兴趣的:(Java并发编程,java)