Spark-06:共享变量

目录

1.广播变量(broadcast variables)

2.累加器(accumulators)


      在分布式计算中,当在集群的多个节点上并行运行函数时,默认情况下,每个任务都会获得函数中使用到的变量的一个副本。如果变量很大,这会导致网络传输占用大量带宽,并且在每个节点上都占用大量内存空间。为了解决这个问题,Spark引入了共享变量的概念。

        共享变量允许在多个任务之间共享数据,而不是为每个任务分别复制一份变量。这样可以显著降低网络传输的开销和内存占用。Spark提供了两种类型的共享变量:广播变量(broadcast variables)和累加器(accumulators)。

1.广播变量(broadcast variables)

        通常情况下,Spark程序运行时,通常会将数据以副本的形式分发到每个执行器(Executor)的任务(Task)中,但当变量较大时,这会导致大量的内存和网络开销。通过使用广播变量,Spark将变量只发送一次到每个节点,并在多个任务之间共享这个副本,从而显著降低了内存占用和网络传输的开销。

Spark-06:共享变量_第1张图片

Spark-06:共享变量_第2张图片

Scala 实现:

scala> val broadcastVar = sc.broadcast(Array(1, 2, 3))
broadcastVar: org.apache.spark.broadcast.Broadcast[Array[Int]] = Broadcast(0)

scala> broadcastVar.value
res0: Array[Int] = Array(1, 2, 3)

Java 实现:

Broadcast broadcastVar = sc.broadcast(new int[] {1, 2, 3});

broadcastVar.value();
// returns [1, 2, 3]

2.累加器(accumulators)

        累加器是Spark中的一种特殊类型的共享变量,主要用来把Executor端变量信息聚合到Driver端。在Driver程序中定义的变量,在Executor端的每个task都会得到这个变量的一份新的副本,每个task更新这些副本的值后,传回Driver端进行merge。累加器支持的数据类型仅限于数值类型,包括整数和浮点数等。

Spark-06:共享变量_第3张图片

Scala 实现:

scala> val accum = sc.longAccumulator("My Accumulator")
accum: org.apache.spark.util.LongAccumulator = LongAccumulator(id: 0, name: Some(My Accumulator), value: 0)

scala> sc.parallelize(Array(1, 2, 3, 4)).foreach(x => accum.add(x))
...
10/09/29 18:41:08 INFO SparkContext: Tasks finished in 0.317106 s

scala> accum.value
res2: Long = 10

Java 实现:

LongAccumulator accum = jsc.sc().longAccumulator();

sc.parallelize(Arrays.asList(1, 2, 3, 4)).foreach(x -> accum.add(x));
// ...
// 10/09/29 18:41:08 INFO SparkContext: Tasks finished in 0.317106 s

accum.value();
// returns 10

你可能感兴趣的:(Spark,spark)