Thrift服务端在调用使用Selector(选择器)进行轮询的时候,遇到读事件,写事件的时候,通过调用FrameBuffer.read(),FrameBuffer.write()来实现业务调用,FrameBuffer封装于AbstractNonblockingServer中.我们来看下相应的源代码:
/**
* Possible states for the FrameBuffer state machine.
* FrameBuffer有可能的所有状态
*/
private enum FrameBufferState {
// in the midst of reading the frame size off the wire
READING_FRAME_SIZE,//读消息大小,是buffer的第一个状态,这步多半是读取消息头从而知道消息的大小长度
// reading the actual frame data now, but not all the way done yet
READING_FRAME,//读消息体
// completely read the frame, so an invocation can now happen
READ_FRAME_COMPLETE,//读完消息,下面可以执行相应的逻辑操作
// waiting to get switched to listening for write events
AWAITING_REGISTER_WRITE,//等待切换到监听写事件,一般表示服务端已经执行完相应的业务逻辑了
// started writing response data, not fully complete yet
WRITING,//写返回数据,给客户端相应
// another thread wants this framebuffer to go back to reading
AWAITING_REGISTER_READ,//等待注册读事件
// we want our transport and selection key invalidated in the selector
// thread
AWAITING_CLOSE//等待关闭
}
1.先读消息头4字节,计算出消息体的长度 ,状态 READING_FRAME_SIZE -> READING_FRAME
2.根据长度读消息体,读完之后执行invoke方法处理业务,状态 READING_FRAME -> READ_FRAME_COMPLETE
3.调用responseReady()做好写数据准备,切换状态,根据状态改变Selector的注册事件,状态 AWAITING_REGISTER_WRITE -> WRITING
4.收到读事件后会调用write方法,会把buffer中的数据返回, 状态 WRITING-> READING_FRAME_SIZE循环开始下一次等待客户端请求
FrameBuffer 源代码比细节性的东西比较多,我这里暂时只是读懂了大概的整体流程,细节性的问题我以后在慢慢研究。
public class FrameBuffer {
private final Logger LOGGER = LoggerFactory.getLogger(getClass().getName());
// the actual transport hooked up to the client.
// 与客户端连接的实际传输。
protected final TNonblockingTransport trans_;
// the SelectionKey that corresponds to our transport
protected final SelectionKey selectionKey_;
// the SelectThread that owns the registration of our transport
protected final AbstractSelectThread selectThread_;
// where in the process of reading/writing are we?
// 第一步设置为读消息头,通过消息头知道消息长度
protected FrameBufferState state_ = FrameBufferState.READING_FRAME_SIZE;
// the ByteBuffer we'll be using to write and read, depending on the state
protected ByteBuffer buffer_;
protected final TByteArrayOutputStream response_;
// the frame that the TTransport should wrap.
protected final TMemoryInputTransport frameTrans_;
// the transport that should be used to connect to clients
// 传输层属性
protected final TTransport inTrans_;
protected final TTransport outTrans_;
// 协议层属性
// the input protocol to use on frames
protected final TProtocol inProt_;
// the output protocol to use on frames
protected final TProtocol outProt_;
// context associated with this connection
protected final ServerContext context_;
public FrameBuffer(final TNonblockingTransport trans,
final SelectionKey selectionKey,
final AbstractSelectThread selectThread) {
trans_ = trans;
selectionKey_ = selectionKey;
selectThread_ = selectThread;
buffer_ = ByteBuffer.allocate(4);
frameTrans_ = new TMemoryInputTransport();
response_ = new TByteArrayOutputStream();
// 设置传输层协议
inTrans_ = inputTransportFactory_.getTransport(frameTrans_);
outTrans_ = outputTransportFactory_.getTransport(new TIOStreamTransport(response_));
// 设置处理层协议
inProt_ = inputProtocolFactory_.getProtocol(inTrans_);
outProt_ = outputProtocolFactory_.getProtocol(outTrans_);
// 与事件驱动相关的,这个我还没弄懂
if (eventHandler_ != null) {
context_ = eventHandler_.createContext(inProt_, outProt_);
} else {
context_ = null;
}
}
/**
* Give this FrameBuffer a chance to read. The selector loop should have
* received a read event for this FrameBuffer.
*
* @return true if the connection should live on, false if it should be
* closed
*/
public boolean read() {
// 这个函数就是用来读取客户端发来的数据,详细实现过程我还没仔细看
// 但是大家可以通过FrameBufferState的状态来看懂大概流程
if (state_ == FrameBufferState.READING_FRAME_SIZE) {
// 读消息头,获取消息体的长度,也是buffer的第一个状态
// try to read the frame size completely
if (!internalRead()) {
return false;
}
// if the frame size has been read completely, then prepare to read the
// actual frame.
if (buffer_.remaining() == 0) {
// pull out the frame size as an integer.
int frameSize = buffer_.getInt(0);
if (frameSize <= 0) {
LOGGER.error("Read an invalid frame size of " + frameSize
+ ". Are you using TFramedTransport on the client side?");
return false;
}
// if this frame will always be too large for this server, log the
// error and close the connection.
if (frameSize > MAX_READ_BUFFER_BYTES) {
LOGGER.error("Read a frame size of " + frameSize
+ ", which is bigger than the maximum allowable buffer size for ALL connections.");
return false;
}
// if this frame will push us over the memory limit, then return.
// with luck, more memory will free up the next time around.
if (readBufferBytesAllocated.get() + frameSize > MAX_READ_BUFFER_BYTES) {
return true;
}
// increment the amount of memory allocated to read buffers
readBufferBytesAllocated.addAndGet(frameSize + 4);
// reallocate the readbuffer as a frame-sized buffer
buffer_ = ByteBuffer.allocate(frameSize + 4);
buffer_.putInt(frameSize);
// 状态设置为FrameBufferState.READING_FRAME,表示开始读消息体
state_ = FrameBufferState.READING_FRAME;
} else {
// this skips the check of READING_FRAME state below, since we can't
// possibly go on to that state if there's data left to be read at
// this one.
return true;
}
}
// it is possible to fall through from the READING_FRAME_SIZE section
// to READING_FRAME if there's already some frame data available once
// READING_FRAME_SIZE is complete.
if (state_ == FrameBufferState.READING_FRAME) {
// 通过上面代码已经将buffer_的大小设置为消息体 的大小,这次读取整个消息体。
if (!internalRead()) {
return false;
}
// since we're already in the select loop here for sure, we can just
// modify our selection key directly.
if (buffer_.remaining() == 0) {
// get rid of the read select interests
selectionKey_.interestOps(0);
// 读完消息,return 以后 下面可以执行操作
state_ = FrameBufferState.READ_FRAME_COMPLETE;
}
return true;
}
// if we fall through to this point, then the state must be invalid.
LOGGER.error("Read was called but state is invalid (" + state_ + ")");
return false;
}
/**
* Give this FrameBuffer a chance to write its output to the final client.
*/
public boolean write() {
if (state_ == FrameBufferState.WRITING) {
try {
if (trans_.write(buffer_) < 0) {
return false;
}
} catch (IOException e) {
LOGGER.warn("Got an IOException during write!", e);
return false;
}
// we're done writing. now we need to switch back to reading.
if (buffer_.remaining() == 0) {
prepareRead();
}
return true;
}
LOGGER.error("Write was called, but state is invalid (" + state_ + ")");
return false;
}
/**
* Give this FrameBuffer a chance to set its interest to write, once data
* has come in.
*/
/**
* 这个函数就是根据FrameBuffer.state_的状态选择下一步干啥
*/
public void changeSelectInterests() {
switch (state_) {
// 是等待切换到监听写事件,设置为SelectionKey.OP_WRITE,往客户端写数据
case AWAITING_REGISTER_WRITE:
// set the OP_WRITE interest
selectionKey_.interestOps(SelectionKey.OP_WRITE);
state_ = FrameBufferState.WRITING;
break;
// 等待注册读事件,调用prepareRead()方法接受客户端下一次的请求
case AWAITING_REGISTER_READ:
prepareRead();
break;
// 等待关闭状态 关闭FrameBuffer
case AWAITING_CLOSE:
close();
selectionKey_.cancel();
break;
default:
LOGGER.error(
"changeSelectInterest was called, but state is invalid ({})",
state_);
}
}
/**
* Shut the connection down.
*/
public void close() {
// if we're being closed due to an error, we might have allocated a
// buffer that we need to subtract for our memory accounting.
if (state_ == FrameBufferState.READING_FRAME ||
state_ == FrameBufferState.READ_FRAME_COMPLETE ||
state_ == FrameBufferState.AWAITING_CLOSE) {
readBufferBytesAllocated.addAndGet(-buffer_.array().length);
}
trans_.close();
if (eventHandler_ != null) {
eventHandler_.deleteContext(context_, inProt_, outProt_);
}
}
/**
* Check if this FrameBuffer has a full frame read.
*/
public boolean isFrameFullyRead() {
return state_ == FrameBufferState.READ_FRAME_COMPLETE;
}
/**
* After the processor has processed the invocation, whatever thread is
* managing invocations should call this method on this FrameBuffer so we
* know it's time to start trying to write again. Also, if it turns out that
* there actually isn't any data in the response buffer, we'll skip trying
* to write and instead go back to reading.
*/
/**
* 看函数名,就是准备回应,调用这个函数一般是客户端rpc请求调用服务端代码,
* 服务端业务逻辑处理完后开始回应客户端,将结果返回过去,如果服务端的业务逻辑
* 处理失败,回应的buffer为空,这次将不会回应数据,开始下一次的读等待
*/
public void responseReady() {
// the read buffer is definitely no longer in use, so we will decrement
// our read buffer count. we do this here as well as in close because
// we'd like to free this read memory up as quickly as possible for other
// clients.
//貌似通过这个方法快速释放读buffer里面的空间
readBufferBytesAllocated.addAndGet(-buffer_.array().length);
if (response_.len() == 0) {
// go straight to reading again. this was probably an oneway method
// 如果回应的数据为空,则设置状态为等待注册读事件
state_ = FrameBufferState.AWAITING_REGISTER_READ;
buffer_ = null;
} else {
// 调用成功,有返回数据
buffer_ = ByteBuffer.wrap(response_.get(), 0, response_.len());
// set state that we're waiting to be switched to write. we do this
// asynchronously through requestSelectInterestChange() because there is
// a possibility that we're not in the main thread, and thus currently
// blocked in select(). (this functionality is in place for the sake of
// the HsHa server.)
/**
* 设置状态,我们正在等待被切换到写入。我们通过requestSelectInterestChange()异步执行此操作,
* 因为有可能我们不在主线程中,因此当前阻塞在select()中。(这个方法功能是为了HsHa服务器而准备的。)
*/
// 设置为等待切换到监听写事件 表示下一步开始要往客户端写数据了
state_ = FrameBufferState.AWAITING_REGISTER_WRITE;
}
requestSelectInterestChange();
}
/**
* Actually invoke the method signified by this FrameBuffer.
* invoke()函数开始进行服务端的业务处理
*/
public void invoke() {
frameTrans_.reset(buffer_.array());
response_.reset();
try {
if (eventHandler_ != null) {
eventHandler_.processContext(context_, inTrans_, outTrans_);
}
// 开始调用服务端业务函数进行业务处理
processorFactory_.getProcessor(inTrans_).process(inProt_, outProt_);
responseReady();
return;
} catch (TException te) {
LOGGER.warn("Exception while invoking!", te);
} catch (Throwable t) {
LOGGER.error("Unexpected throwable while invoking!", t);
}
// This will only be reached when there is a throwable.
state_ = FrameBufferState.AWAITING_CLOSE;
requestSelectInterestChange();
}
/**
* Perform a read into buffer.
*
* @return true if the read succeeded, false if there was an error or the
* connection closed.
*/
private boolean internalRead() {
try {
if (trans_.read(buffer_) < 0) {
return false;
}
return true;
} catch (IOException e) {
LOGGER.warn("Got an IOException in internalRead!", e);
return false;
}
}
/**
* We're done writing, so reset our interest ops and change state
* accordingly.
*/
/**
* 完成了写状态,重新设置为读状态,等待下一次客户端的请求
*/
private void prepareRead() {
// we can set our interest directly without using the queue because
// we're in the select thread.
selectionKey_.interestOps(SelectionKey.OP_READ);
// get ready for another go-around
buffer_ = ByteBuffer.allocate(4);
//设置为开始下次读消息头,获取表示消息体的长度,也是buffer的第一个状态
state_ = FrameBufferState.READING_FRAME_SIZE;
}
/**
* When this FrameBuffer needs to change its select interests and execution
* might not be in its select thread, then this method will make sure the
* interest change gets done when the select thread wakes back up. When the
* current thread is this FrameBuffer's select thread, then it just does the
* interest change immediately.
*/
/**
* 当这个FrameBuffer需要更改它的select感兴趣的状态,执行的线程可能不是SelectThread,
* 那么这个方法将确保在SelectThread线程恢复时完成感兴趣的状态更改。如果当当前线程是
* 这个FrameBuffer的SelectThread时,它只会立即改变感兴趣的状态。(这个方法功能是为了HsHa服务器而准备的。)
*/
protected void requestSelectInterestChange() {
if (Thread.currentThread() == this.selectThread_) {
changeSelectInterests();
} else {
// 如果不是selectThread,则调用requestSelectInterestChange()方法
// 将FrameBuffer放到SelectThread里面的一个Set里面,这个Set声明在AbstractSelectThread类里
this.selectThread_.requestSelectInterestChange(this);
}
}
} // FrameBuffer