Thrift服务端源码分析(FrameBuffer )

Thrift服务端在调用使用Selector(选择器)进行轮询的时候,遇到读事件,写事件的时候,通过调用FrameBuffer.read(),FrameBuffer.write()来实现业务调用,FrameBuffer封装于AbstractNonblockingServer中.我们来看下相应的源代码:

/**
     * Possible states for the FrameBuffer state machine.
     * FrameBuffer有可能的所有状态
      */
    private enum FrameBufferState {
        // in the midst of reading the frame size off the wire
        READING_FRAME_SIZE,//读消息大小,是buffer的第一个状态,这步多半是读取消息头从而知道消息的大小长度
        // reading the actual frame data now, but not all the way done yet
        READING_FRAME,//读消息体
        // completely read the frame, so an invocation can now happen
        READ_FRAME_COMPLETE,//读完消息,下面可以执行相应的逻辑操作
        // waiting to get switched to listening for write events
        AWAITING_REGISTER_WRITE,//等待切换到监听写事件,一般表示服务端已经执行完相应的业务逻辑了
        // started writing response data, not fully complete yet
        WRITING,//写返回数据,给客户端相应
        // another thread wants this framebuffer to go back to reading
        AWAITING_REGISTER_READ,//等待注册读事件
        // we want our transport and selection key invalidated in the selector
        // thread
        AWAITING_CLOSE//等待关闭
    }

1.先读消息头4字节,计算出消息体的长度 ,状态 READING_FRAME_SIZE -> READING_FRAME

2.根据长度读消息体,读完之后执行invoke方法处理业务,状态 READING_FRAME -> READ_FRAME_COMPLETE

3.调用responseReady()做好写数据准备,切换状态,根据状态改变Selector的注册事件,状态 AWAITING_REGISTER_WRITE -> WRITING

4.收到读事件后会调用write方法,会把buffer中的数据返回, 状态 WRITING-> READING_FRAME_SIZE循环开始下一次等待客户端请求

FrameBuffer 源代码比细节性的东西比较多,我这里暂时只是读懂了大概的整体流程,细节性的问题我以后在慢慢研究。

public class FrameBuffer {
    private final Logger LOGGER = LoggerFactory.getLogger(getClass().getName());

    // the actual transport hooked up to the client.
    // 与客户端连接的实际传输。
    protected final TNonblockingTransport trans_;

    // the SelectionKey that corresponds to our transport
    protected final SelectionKey selectionKey_;

    // the SelectThread that owns the registration of our transport
    protected final AbstractSelectThread selectThread_;

    // where in the process of reading/writing are we?
    // 第一步设置为读消息头,通过消息头知道消息长度
    protected FrameBufferState state_ = FrameBufferState.READING_FRAME_SIZE;

    // the ByteBuffer we'll be using to write and read, depending on the state
    protected ByteBuffer buffer_;

    protected final TByteArrayOutputStream response_;

    // the frame that the TTransport should wrap.
    protected final TMemoryInputTransport frameTrans_;

    // the transport that should be used to connect to clients
    // 传输层属性
    protected final TTransport inTrans_;

    protected final TTransport outTrans_;

    // 协议层属性
    // the input protocol to use on frames
    protected final TProtocol inProt_;

    // the output protocol to use on frames
    protected final TProtocol outProt_;

    // context associated with this connection
    protected final ServerContext context_;

    public FrameBuffer(final TNonblockingTransport trans,
        final SelectionKey selectionKey,
        final AbstractSelectThread selectThread) {
      trans_ = trans;
      selectionKey_ = selectionKey;
      selectThread_ = selectThread;
      buffer_ = ByteBuffer.allocate(4);

      frameTrans_ = new TMemoryInputTransport();
      response_ = new TByteArrayOutputStream();
      // 设置传输层协议
      inTrans_ = inputTransportFactory_.getTransport(frameTrans_);
      outTrans_ = outputTransportFactory_.getTransport(new TIOStreamTransport(response_));
      // 设置处理层协议
      inProt_ = inputProtocolFactory_.getProtocol(inTrans_);
      outProt_ = outputProtocolFactory_.getProtocol(outTrans_);

      // 与事件驱动相关的,这个我还没弄懂
      if (eventHandler_ != null) {
        context_ = eventHandler_.createContext(inProt_, outProt_);
      } else {
        context_  = null;
      }
    }

    /**
     * Give this FrameBuffer a chance to read. The selector loop should have
     * received a read event for this FrameBuffer.
     *
     * @return true if the connection should live on, false if it should be
     *         closed
     */
    public boolean read() {
      // 这个函数就是用来读取客户端发来的数据,详细实现过程我还没仔细看
      // 但是大家可以通过FrameBufferState的状态来看懂大概流程
      if (state_ == FrameBufferState.READING_FRAME_SIZE) {
        // 读消息头,获取消息体的长度,也是buffer的第一个状态
        // try to read the frame size completely
        if (!internalRead()) {
          return false;
        }

        // if the frame size has been read completely, then prepare to read the
        // actual frame.
        if (buffer_.remaining() == 0) {
          // pull out the frame size as an integer.
          int frameSize = buffer_.getInt(0);
          if (frameSize <= 0) {
            LOGGER.error("Read an invalid frame size of " + frameSize
                + ". Are you using TFramedTransport on the client side?");
            return false;
          }

          // if this frame will always be too large for this server, log the
          // error and close the connection.
          if (frameSize > MAX_READ_BUFFER_BYTES) {
            LOGGER.error("Read a frame size of " + frameSize
                + ", which is bigger than the maximum allowable buffer size for ALL connections.");
            return false;
          }

          // if this frame will push us over the memory limit, then return.
          // with luck, more memory will free up the next time around.
          if (readBufferBytesAllocated.get() + frameSize > MAX_READ_BUFFER_BYTES) {
            return true;
          }

          // increment the amount of memory allocated to read buffers
          readBufferBytesAllocated.addAndGet(frameSize + 4);

          // reallocate the readbuffer as a frame-sized buffer
          buffer_ = ByteBuffer.allocate(frameSize + 4);
          buffer_.putInt(frameSize);
          
          // 状态设置为FrameBufferState.READING_FRAME,表示开始读消息体
          state_ = FrameBufferState.READING_FRAME;
        } else {
          // this skips the check of READING_FRAME state below, since we can't
          // possibly go on to that state if there's data left to be read at
          // this one.
          return true;
        }
      }

      // it is possible to fall through from the READING_FRAME_SIZE section
      // to READING_FRAME if there's already some frame data available once
      // READING_FRAME_SIZE is complete.

      if (state_ == FrameBufferState.READING_FRAME) {
        // 通过上面代码已经将buffer_的大小设置为消息体 的大小,这次读取整个消息体。
        if (!internalRead()) {
          return false;
        }

        // since we're already in the select loop here for sure, we can just
        // modify our selection key directly.
        if (buffer_.remaining() == 0) {
          // get rid of the read select interests
          selectionKey_.interestOps(0);
          // 读完消息,return 以后 下面可以执行操作
          state_ = FrameBufferState.READ_FRAME_COMPLETE;
        }

        return true;
      }

      // if we fall through to this point, then the state must be invalid.
      LOGGER.error("Read was called but state is invalid (" + state_ + ")");
      return false;
    }

    /**
     * Give this FrameBuffer a chance to write its output to the final client.
     */
    public boolean write() {
      if (state_ == FrameBufferState.WRITING) {
        try {
          if (trans_.write(buffer_) < 0) {
            return false;
          }
        } catch (IOException e) {
          LOGGER.warn("Got an IOException during write!", e);
          return false;
        }

        // we're done writing. now we need to switch back to reading.
        if (buffer_.remaining() == 0) {
          prepareRead();
        }
        return true;
      }

      LOGGER.error("Write was called, but state is invalid (" + state_ + ")");
      return false;
    }

    /**
     * Give this FrameBuffer a chance to set its interest to write, once data
     * has come in.
     */
     /**
     * 这个函数就是根据FrameBuffer.state_的状态选择下一步干啥
     */
    public void changeSelectInterests() {
      switch (state_) {
        // 是等待切换到监听写事件,设置为SelectionKey.OP_WRITE,往客户端写数据
      case AWAITING_REGISTER_WRITE:
        // set the OP_WRITE interest
        selectionKey_.interestOps(SelectionKey.OP_WRITE);
        state_ = FrameBufferState.WRITING;
        break;
        // 等待注册读事件,调用prepareRead()方法接受客户端下一次的请求
      case AWAITING_REGISTER_READ:
        prepareRead();
        break;
        // 等待关闭状态 关闭FrameBuffer
      case AWAITING_CLOSE:
        close();
        selectionKey_.cancel();
        break;
      default:
        LOGGER.error(
            "changeSelectInterest was called, but state is invalid ({})",
            state_);
      }
    }

    /**
     * Shut the connection down.
     */
    public void close() {
      // if we're being closed due to an error, we might have allocated a
      // buffer that we need to subtract for our memory accounting.
      if (state_ == FrameBufferState.READING_FRAME ||
          state_ == FrameBufferState.READ_FRAME_COMPLETE ||
          state_ == FrameBufferState.AWAITING_CLOSE) {
        readBufferBytesAllocated.addAndGet(-buffer_.array().length);
      }
      trans_.close();
      if (eventHandler_ != null) {
        eventHandler_.deleteContext(context_, inProt_, outProt_);
      }
    }

    /**
     * Check if this FrameBuffer has a full frame read.
     */
    public boolean isFrameFullyRead() {
      return state_ == FrameBufferState.READ_FRAME_COMPLETE;
    }

    /**
     * After the processor has processed the invocation, whatever thread is
     * managing invocations should call this method on this FrameBuffer so we
     * know it's time to start trying to write again. Also, if it turns out that
     * there actually isn't any data in the response buffer, we'll skip trying
     * to write and instead go back to reading.
     */
   /**
     * 看函数名,就是准备回应,调用这个函数一般是客户端rpc请求调用服务端代码,
     * 服务端业务逻辑处理完后开始回应客户端,将结果返回过去,如果服务端的业务逻辑
     * 处理失败,回应的buffer为空,这次将不会回应数据,开始下一次的读等待
     */
    public void responseReady() {
      // the read buffer is definitely no longer in use, so we will decrement
      // our read buffer count. we do this here as well as in close because
      // we'd like to free this read memory up as quickly as possible for other
      // clients.
      //貌似通过这个方法快速释放读buffer里面的空间
      readBufferBytesAllocated.addAndGet(-buffer_.array().length);

      if (response_.len() == 0) {
        // go straight to reading again. this was probably an oneway method
        // 如果回应的数据为空,则设置状态为等待注册读事件
        state_ = FrameBufferState.AWAITING_REGISTER_READ;
        buffer_ = null;
      } else {
        // 调用成功,有返回数据
        buffer_ = ByteBuffer.wrap(response_.get(), 0, response_.len());

        // set state that we're waiting to be switched to write. we do this
        // asynchronously through requestSelectInterestChange() because there is
        // a possibility that we're not in the main thread, and thus currently
        // blocked in select(). (this functionality is in place for the sake of
        // the HsHa server.)
        /**
         * 设置状态,我们正在等待被切换到写入。我们通过requestSelectInterestChange()异步执行此操作,
         * 因为有可能我们不在主线程中,因此当前阻塞在select()中。(这个方法功能是为了HsHa服务器而准备的。)
         */
        // 设置为等待切换到监听写事件 表示下一步开始要往客户端写数据了
        state_ = FrameBufferState.AWAITING_REGISTER_WRITE;
      }
      requestSelectInterestChange();
    }
    /**
     * Actually invoke the method signified by this FrameBuffer.
     * invoke()函数开始进行服务端的业务处理
     */
    public void invoke() {
      frameTrans_.reset(buffer_.array());
      response_.reset();

      try {
        if (eventHandler_ != null) {
          eventHandler_.processContext(context_, inTrans_, outTrans_);
        }
        // 开始调用服务端业务函数进行业务处理
        processorFactory_.getProcessor(inTrans_).process(inProt_, outProt_);
        responseReady();
        return;
      } catch (TException te) {
        LOGGER.warn("Exception while invoking!", te);
      } catch (Throwable t) {
        LOGGER.error("Unexpected throwable while invoking!", t);
      }
      // This will only be reached when there is a throwable.
      state_ = FrameBufferState.AWAITING_CLOSE;
      requestSelectInterestChange();
    }

    /**
     * Perform a read into buffer.
     *
     * @return true if the read succeeded, false if there was an error or the
     *         connection closed.
     */
    private boolean internalRead() {
      try {
        if (trans_.read(buffer_) < 0) {
          return false;
        }
        return true;
      } catch (IOException e) {
        LOGGER.warn("Got an IOException in internalRead!", e);
        return false;
      }
    }

    /**
     * We're done writing, so reset our interest ops and change state
     * accordingly.
     */
     /**
     * 完成了写状态,重新设置为读状态,等待下一次客户端的请求
     */
    private void prepareRead() {
      // we can set our interest directly without using the queue because
      // we're in the select thread.
      selectionKey_.interestOps(SelectionKey.OP_READ);
      // get ready for another go-around
      buffer_ = ByteBuffer.allocate(4);
      //设置为开始下次读消息头,获取表示消息体的长度,也是buffer的第一个状态
      state_ = FrameBufferState.READING_FRAME_SIZE;
    }

    /**
     * When this FrameBuffer needs to change its select interests and execution
     * might not be in its select thread, then this method will make sure the
     * interest change gets done when the select thread wakes back up. When the
     * current thread is this FrameBuffer's select thread, then it just does the
     * interest change immediately.
     */
 /**
     * 当这个FrameBuffer需要更改它的select感兴趣的状态,执行的线程可能不是SelectThread,
     * 那么这个方法将确保在SelectThread线程恢复时完成感兴趣的状态更改。如果当当前线程是
     * 这个FrameBuffer的SelectThread时,它只会立即改变感兴趣的状态。(这个方法功能是为了HsHa服务器而准备的。)
     */
    protected void requestSelectInterestChange() {
      if (Thread.currentThread() == this.selectThread_) {
        changeSelectInterests();
      } else {
        // 如果不是selectThread,则调用requestSelectInterestChange()方法
        // 将FrameBuffer放到SelectThread里面的一个Set里面,这个Set声明在AbstractSelectThread类里
        this.selectThread_.requestSelectInterestChange(this);
      }
    }
  } // FrameBuffer

你可能感兴趣的:(Thrift服务端源码分析(FrameBuffer ))