- 第三十个问题-讲讲Agent、MCP、OpenAI Responses API
释迦呼呼
AI一千问人工智能语言模型机器学习深度学习自然语言处理
1.Agent(智能体)136定义与核心功能Agent是什么:能够自主执行复杂任务的智能实体,通常基于大语言模型(LLM)构建,配备指令和工具,可独立完成多步骤任务(如网络搜索、文件处理、自动化操作等)18。应用场景:客服自动化、法律文档检索、代码审查、数据输入、股票分析等36。OpenAI的Agent生态:DeepResearch:自动生成带引用的研究报告。Operator:通过控制浏览器光标执
- 大模型在招聘场景下的应用
IT猫仔
人工智能ai学习
大模型在招聘场景下的应用具有广泛的可能性。一、简历自动化筛选与匹配应用:大模型能够自动分析大量简历,根据职位要求筛选出合适的候选人,并按匹配度排序。Prompt写法:请对以下简历进行筛选,找出符合【职位名称】职位要求的候选人。职位要求包括【具体要求】。请提供筛选结果,并按照匹配度从高到低排序。举例:请对以下简历进行筛选,找出符合“产品经理”职位要求的候选人。职位要求包括具备3年以上产品经验、熟悉用
- DeepSeek多语言智能创作引擎解析
智能计算研究中心
其他
内容概要在人工智能技术加速演进的背景下,DeepSeek系列产品通过混合专家架构(MoE)与670亿参数的协同设计,构建了多模态智能创作引擎的核心竞争力。该系统依托动态路由机制,将视觉语言理解模块与多语言处理单元进行深度耦合,使模型在解析图文混合信息时展现出超越单一模态的认知能力。尤为突出的是,其分层参数激活策略将推理成本降低至传统密集模型的38%,同时维持了95%以上的任务完成精度。行业分析机构
- 大模型工程师学习日记(十五):Hugging Face 模型微调训练(基于 BERT 的中文评价情感分析)
MMMMMMMay Love Code
学习bert人工智能深度学习自然语言处理全量微调
1.datasets库核心方法1.1.列出数据集使用datasets库,你可以轻松列出所有HuggingFace平台上的数据集:fromdatasetsimportlist_datasets#列出所有数据集all_datasets=list_datasets()print(all_datasets)1.2.加载数据集你可以通过load_dataset方法加载任何数据集:fromdatasetsim
- 大模型工程师学习日记(十四):检索增强生成(RAG)
MMMMMMMay Love Code
学习langchain深度学习人工智能开发语言
如何递归分割文本递归分割(recursively),这个文本分割器是用于通用文本的推荐工具。它接受一个字符列表作为参数。它会按顺序尝试在这些字符上进行分割,直到块足够小。默认的字符列表是["\n\n","\n","",""]。这样做的效果是尽可能保持所有段落(然后是句子,再然后是单词)在一起,因为这些通常看起来是语义上相关的文本块。文本如何分割:根据字符列表。块大小如何衡量:根据字符数量。下面我们
- iOS OC使用正则表达式去除特殊符号并加粗文本,适用于接入AI大模型的流模式数据的文字处理
MrZWCui
iOSiosxcodeobjective-c正则表达式学习
1、编写逻辑使用分类(Category)的方法拓展NSString,本文使用NSString(Markdown),NSString的分类来编写一个通用方法,使用正则表达式匹配字符串实现去除特殊字符,并自定义文字属性。在接入AI大模型后,返回的字符串会带有特殊字符用于做文字处理,下面代码简单进行了文字处理展示。2、代码实现1、NSString+Markdown.h#importNS_ASSUME_N
- 通义千问:阿里巴巴的AI大模型深度解析
俊星学长
人工智能
通义千问:阿里巴巴的AI大模型深度解析在人工智能(AI)技术日新月异的今天,大型语言模型作为其中的佼佼者,正逐步改变着我们的生活与工作方式。阿里巴巴推出的通义千问,作为这一领域的佼佼者,以其卓越的性能和广泛的应用场景,引起了业界的广泛关注。本文将从通义千问的简介、模型架构、技术特点与优势、应用场景以及未来发展等多个方面,对其进行全面解析。一、通义千问简介通义千问是由阿里云开发的一款大型语言模型,旨
- 【模拟面试】计算机考研复试集训(第二天)
Albert Edison
计算机考研复试高频考点面试考研职场和发展c++数据结构算法操作系统
文章目录前言一、专业面试1、OSI参考模型和TCP/IP模型的主要区别是什么?简述各层功能2、什么是瀑布模型?其优缺点是什么?3、什么是递归?使用时需注意什么?4、监督学习与无监督学习的核心区别是什么?请举例说明典型算法5、你在项目中遇到过哪些技术挑战?是如何解决的?二、英文口语1、Canyoutellusaboutatimeyouworkedinateamandfacedchallenges?H
- Python 潮流周刊#93:为什么“if not list”比len()快2倍?(摘要)
python
本周刊由Python猫出品,精心筛选国内外的250+信息源,为你挑选最值得分享的文章、教程、开源项目、软件工具、播客和视频、热门话题等内容。愿景:帮助所有读者精进Python技术,并增长职业和副业的收入。分享了12篇文章,12个开源项目以下是本期摘要:文章&教程①为什么Python中'ifnotlist'比len()快2倍?②掌握Python单体代码库③Python3.14尾调用解释器的性能④Py
- DeepSeek:中国大模型 “破壁者” 引发的四大产业地震
赵同学爱学习
人工智能chatgptDeepSeek语言模型大模型开源
导语:当全球AI产业还在为GPT-4的1750亿参数惊叹时,中国团队DeepSeek以颠覆性创新撕开了大模型领域的“铁幕”。这款首个引发国际学术界集体关注的中文大模型,正从技术底层重构产业规则,其冲击波已蔓延至硬件、软件、商业模式的每个角落。一、算力霸权瓦解:低成本训推技术改写游戏规则1.1训练成本“悬崖式下降”DeepSeek通过混合专家架构(MoE)动态路由算法,在同等效果下将模型激活参数压缩
- 小白零基础学数学建模系列-Day1-数学建模入门介绍与案例实践
川川菜鸟
数学建模小白到精通系列数学建模
目录一、数学建模的定义和重要性1.1什么是数学建模?1.2数学建模的重要性二、常见的数学建模方法概述2.1线性模型和案例2.1.1特点2.1.2应用2.1.3问题2.1.4模型2.1.5数学表达式2.1.6求解算法2.2非线性模型和案例2.2.1特点2.2.2应用2.2.3问题2.2.4模型2.2.5数学表达式2.2.6算法2.3动态模型2.3.1特点2.3.2应用2.3.3常见问题2.3.4模型
- Transformer动画讲解 - 工作原理
ghx3110
transformer深度学习人工智能
Transformer模型在多模态数据处理中扮演着重要角色,其能够高效、准确地处理包含不同类型(如图像、文本、音频、视频等)的多模态数据。Transformer工作原理四部曲:Embedding(向量化)、Attention(注意力机制)、MLPs(多层感知机)和Unembedding(模型输出)。阶段一:Embedding(向量化)“Embedding”在字面上的翻译是“嵌入”,但在机器学习和自
- 谷歌Gemini 3大模型发布,AI领域再掀波澜!
广拓科技
人工智能
在人工智能的浩瀚宇宙中,每一次重大突破都如同一颗璀璨的新星,照亮我们对未来的想象。而近期,谷歌发布的Gemini3大模型,无疑是其中最为耀眼的存在,它在AI领域激起的波澜,迅速蔓延至全球科技圈,引发了广泛关注与热烈讨论。随着AI技术的迅猛发展,我们已经见证了众多令人惊叹的创新成果。从智能语音助手到图像识别技术,从自动驾驶汽车到医疗诊断辅助系统,AI正以前所未有的速度改变着我们的生活和工作方式。在这
- 大语言模型的潜力是否被高估
dev.null
AI#NLP语言模型人工智能机器学习
关于大语言模型(LLM)的潜力是否被高估,目前学术界和产业界存在显著分歧。以下从技术能力、应用局限性和未来发展方向三个方面综合分析:一、技术能力的争议:潜力与局限并存对现实世界的理解与模拟MIT的研究表明,LLM在训练过程中可能自发形成对现实世界的内部模拟。例如,通过解决卡雷尔编程谜题(KarelPuzzle),模型在没有直接接触环境信息的情况下,正确率从初始的随机指令提升至92.4%,并展现出对
- LLM之Colossal-LLaMA-2:源码解读(init_tokenizer.py文件)实现基于源词表的扩展、(init_model.py文件)实现过计算均值扩展模型、(prepare_pretr
一个处女座的程序猿
CaseCodeNLP/LLMs精选(人工智能)-中级ColossalLLaMA-2自然语言处理
LLM之Colossal-LLaMA-2:源码解读(init_tokenizer.py文件)实现基于jsonl文件中读取新词列表(新中文词汇)→for循环去重实现词表的扩展(中文标记的新词汇)→保存新的分词模型、(init_model.py文件)实现过计算均值来扩展模型的嵌入层以适应新的词汇表,然后保存扩展后的模型、(prepare_pretrain_dataset.py文件)将原始数据集进行处理
- LLMs之Colossal-LLaMA-2:源码解读(train.py文件)基于给定数据集实现持续预训练LLaMA-2—解析命令行参数→初始化配置(分布式训练环境colossalai+训练日志+加速插
一个处女座的程序猿
NLP/LLMs精选(人工智能)-中级Colossal-AILLaMA-2大语言模型自然语言处理
LLMs之Colossal-LLaMA-2:源码解读(train.py文件)基于给定数据集实现持续预训练LLaMA-2—解析命令行参数→初始化配置(分布式训练环境colossalai+训练日志+加速插件)→数据预处理(初始化分词器+数据处理器+数据加载器)→模型训练(初始化模型/优化器/学习率调度器/梯度检查点/Flash-Attention/设置数据类型/是否加载预训练模型/从上一次训练点继续训
- 论零信任架构在现代网络安全中的变革性作用
烁月_o9
安全web安全网络
论零信任架构在现代网络安全中的变革性作用摘要本文深入探讨零信任架构(ZTA)在网络安全领域的关键地位与创新价值。通过分析传统网络安全模型的局限性,阐述ZTA的核心原则、技术组件及实践应用,揭示其在应对复杂多变的网络威胁时,如何重塑安全理念与防护模式,为保障组织数字资产安全提供前瞻性的策略与方法。一、引言在数字化浪潮席卷全球的当下,网络边界的模糊性使传统基于边界防御的安全模型捉襟见肘。零信任架构应运
- ollama+qwq小试牛刀
llm
序本文主要演示一下ollama运行QwQ-32B模型步骤pullollamapullqwqpullingmanifestpullingc62ccde5630c...100%▕███████████████████████████████████████████████████████████████████████████████████████████████████████▏19GBpulli
- 18、企业级服务-JMS
跟着汪老师学编程
java开发语言java-ee
JavaMessageService(JMS)一.引言JavaMessageService(JMS)是Java平台上用于实现消息orientedmiddleware(消息中间件)的标准API。它为企业级应用中的异步通信提供了一种高效、灵活且可靠的方式,允许不同的系统组件之间通过发送和接收消息进行通信,而无需直接依赖彼此的实现细节。JMS支持两种主要的消息模型:点对点(Point-to-Point,
- (大模型微调大模型学习路线大模型入门)_大模型 学习,吹爆!2025最详细的大模型学习路线已整理!手把手带你高效入门,大模型论文全打通!
大模型老炮
学习人工智能大模型学习AI大模型大模型微调大模型教程
一、初聊大模型1、什么是大模型?大模型,通常指的是在人工智能领域中的大型预训练模型。你可以把它们想象成非常聪明的大脑,这些大脑通过阅读大量的文本、图片、声音等信息,学习到了世界的知识。这些大脑(模型)非常大,有的甚至有几千亿个参数,这些参数就像是大脑中的神经元,它们通过复杂的计算来理解和生成语言、图片等。举个例子,你可能听说过GPT-3,它就是一个非常著名的大模型。GPT-3可以通过理解你提出的问
- 国产 DeepSeek V3 被秒成“前浪“?谷歌开放最强 Gemini 2.0 全家桶:速度快60倍,上下文还长16倍!
Bryan Ding
人工智能深度学习
谷歌向所有人发布了Gemini2.0——迄今为止谷歌“功能最强大”的人工智能模型套件。1谷歌Gemini2.0向所有人开放去年12月,谷歌发布Gemini2.0Flash的实验版本,正式开启了代理型AI的新时代。Gemini2.0Flash是谷歌为开发者群体打造的高效主力模型,具有低延迟、高性能等优势。今年早些时候,谷歌在GoogleAIStudio中更新了2.0FlashThinkingExpe
- 【PyTorch】PyTorch 中改变张量形状的几种方法
shengchao0920
pytorch人工智能python
PyTorch中改变张量形状的几种方法在深度学习领域,PyTorch是一个广泛使用的框架,它提供了丰富的API来处理张量(tensor)。在模型开发过程中,我们经常需要改变张量的形状以满足特定的需求。本文将介绍在PyTorch中改变张量形状的几种方法,并给出推荐的使用场景。比如:我们想合并一个张量的最后两个维度。一、方法1.使用reshape方法reshape方法可以改变张量的形状而不改变其数据。
- CESM1.2.1移植使用说明
༊.枕星'听光.ঌ
人工智能linux
文章目录概述环境配置cesm1_2_1配置部分环境软件压缩包改变CLM陆面模式结果文件的输出变量、特征值及频率小结概述记录用户如何在Linux系统上移植CESM1.2.1模型,并且使用CLM4.5模式创建并单点模拟算例I_2000_CLM45。环境配置1.更新系统软件源2.更新系统安装软件安装git、make、python等。3.安装MPI(openmpi4.1.5)//下载并解压进入文件夹wge
- [Pytorch] Error:module ‘torch‘ has no attribute ‘logical_and‘
江南蜡笔小新
杂记pytorch深度学习神经网络
最近学习的模型用到了这个逻辑与的操作,Pytorch1.3.x报错。查阅官方文档,只有logical_not和logical_xor的实现。但在1.9的文档中有logical_and遂查阅相关更新,得知logical_and在1.5之后的新功能,pytorch更新到>=1.5即可解决问题。1.3.1搜索结果1.5.1搜索结果
- 一文讲清楚CUDA与PyTorch、GPU之间的关系
平凡而伟大.
编程语言人工智能架构设计pytorch人工智能python
CUDA(ComputeUnifiedDeviceArchitecture)是由NVIDIA开发的一个并行计算平台和编程模型。它允许软件开发人员和研究人员利用NVIDIA的GPU(图形处理单元)进行高性能计算。CUDA提供了一系列API和工具,使得开发者能够编写和优化在GPU上运行的计算密集型任务。CUDA与PyTorch、GPU之间的关系可以这样理解:1.CUDA与GPU:GPU:是一种专门用于
- 训练模型时,步长为什么不能太大也不能太小?
yuanpan
人工智能
在训练模型时,步长(也称为学习率,LearningRate)是一个关键的超参数,它控制着每次参数更新的大小。步长既不能太大,也不能太小,原因如下:1.步长太大的问题如果步长过大,会导致以下问题:模型发散(Divergence):参数更新幅度过大,可能导致损失函数的值不断增大,甚至无法收敛,模型性能急剧下降。错过最优解:过大的步长可能导致参数在最优解附近震荡,甚至直接跳过最优解,无法找到良好的模型参
- 模型的秘密武器:利用注意力改善长上下文推理能力
步子哥
人工智能自然语言处理深度学习语言模型
【导语】在大语言模型(LLM)不断刷新各项任务记录的今天,很多模型宣称能处理超长上下文内容,但在实际推理过程中,复杂问题往往因隐性事实的遗漏而败下阵来。今天,我们就以《AttentionRevealsMoreThanTokens:Training-FreeLong-ContextReasoningwithAttention-guidedRetrieval》为蓝本,带大家通俗解读如何利用Transf
- 机器学习中的梯度到底是什么?(chat-gpt问答)
湫怿
机器学习gpt人工智能梯度
1、梯度是对损失函数求导吗?是的,梯度是对损失函数(或目标函数)求导数值化后的结果。梯度告诉我们目标函数在某个点上的方向性和变化率,这些信息是优化算法推进参数评估和更新的重要指标。在机器学习中,我们通过不断调整参数,使目标函数达到最小值,从而实现模型的训练和学习。2、为什么梯度要求偏导来求解?梯度是一个向量,它的方向指向函数值增加最快的方向,其大小表示函数值的变化率。为了确定梯度的方向和大小,需要
- 大型语言模型与强化学习的融合:迈向通用人工智能的新范式——基于基础复现的实验平台构建
(initial)
大模型科普人工智能强化学习
1.引言大型语言模型(LLM)在自然语言处理领域的突破,展现了强大的知识存储、推理和生成能力,为人工智能带来了新的可能性。强化学习(RL)作为一种通过与环境交互学习最优策略的方法,在智能体训练中发挥着重要作用。本文旨在探索LLM与RL的深度融合,分析LLM如何赋能RL,并阐述这种融合对于迈向通用人工智能(AGI)的意义。为了更好地理解这一融合的潜力,我们基于“LargeLanguageModela
- 目标检测中衡量模型速度和精度的指标:FPS和mAP
asdfg1258963
目标检测_ai目标检测人工智能
“FPS”和“mAP”分别衡量了模型的速度和精度。FPS(FramesPerSecond)定义:FPS是“每秒传输帧数”的缩写,用于衡量计算机视觉系统(如目标检测、图像识别等)的实时性能。它表示系统每秒钟能够处理的图像或视频帧的数量。重要性:在实时应用中,如自动驾驶、视频监控等,FPS是一个关键指标。高FPS意味着系统能够快速处理输入的图像数据,实现实时响应。计算方式:FPS可以通过以下公式计算:
- 多线程编程之卫生间
周凡杨
java并发卫生间线程厕所
如大家所知,火车上车厢的卫生间很小,每次只能容纳一个人,一个车厢只有一个卫生间,这个卫生间会被多个人同时使用,在实际使用时,当一个人进入卫生间时则会把卫生间锁上,等出来时打开门,下一个人进去把门锁上,如果有一个人在卫生间内部则别人的人发现门是锁的则只能在外面等待。问题分析:首先问题中有两个实体,一个是人,一个是厕所,所以设计程序时就可以设计两个类。人是多数的,厕所只有一个(暂且模拟的是一个车厢)。
- How to Install GUI to Centos Minimal
sunjing
linuxInstallDesktopGUI
http://www.namhuy.net/475/how-to-install-gui-to-centos-minimal.html
I have centos 6.3 minimal running as web server. I’m looking to install gui to my server to vnc to my server. You can insta
- Shell 函数
daizj
shell函数
Shell 函数
linux shell 可以用户定义函数,然后在shell脚本中可以随便调用。
shell中函数的定义格式如下:
[function] funname [()]{
action;
[return int;]
}
说明:
1、可以带function fun() 定义,也可以直接fun() 定义,不带任何参数。
2、参数返回
- Linux服务器新手操作之一
周凡杨
Linux 简单 操作
1.whoami
当一个用户登录Linux系统之后,也许他想知道自己是发哪个用户登录的。
此时可以使用whoami命令。
[ecuser@HA5-DZ05 ~]$ whoami
e
- 浅谈Socket通信(一)
朱辉辉33
socket
在java中ServerSocket用于服务器端,用来监听端口。通过服务器监听,客户端发送请求,双方建立链接后才能通信。当服务器和客户端建立链接后,两边都会产生一个Socket实例,我们可以通过操作Socket来建立通信。
首先我建立一个ServerSocket对象。当然要导入java.net.ServerSocket包
ServerSock
- 关于框架的简单认识
西蜀石兰
框架
入职两个月多,依然是一个不会写代码的小白,每天的工作就是看代码,写wiki。
前端接触CSS、HTML、JS等语言,一直在用的CS模型,自然免不了数据库的链接及使用,真心涉及框架,项目中用到的BootStrap算一个吧,哦,JQuery只能算半个框架吧,我更觉得它是另外一种语言。
后台一直是纯Java代码,涉及的框架是Quzrtz和log4j。
都说学前端的要知道三大框架,目前node.
- You have an error in your SQL syntax; check the manual that corresponds to your
林鹤霄
You have an error in your SQL syntax; check the manual that corresponds to your MySQL server version for the right syntax to use near 'option,changed_ids ) values('0ac91f167f754c8cbac00e9e3dc372
- MySQL5.6的my.ini配置
aigo
mysql
注意:以下配置的服务器硬件是:8核16G内存
[client]
port=3306
[mysql]
default-character-set=utf8
[mysqld]
port=3306
basedir=D:/mysql-5.6.21-win
- mysql 全文模糊查找 便捷解决方案
alxw4616
mysql
mysql 全文模糊查找 便捷解决方案
2013/6/14 by 半仙
[email protected]
目的: 项目需求实现模糊查找.
原则: 查询不能超过 1秒.
问题: 目标表中有超过1千万条记录. 使用like '%str%' 进行模糊查询无法达到性能需求.
解决方案: 使用mysql全文索引.
1.全文索引 : MySQL支持全文索引和搜索功能。MySQL中的全文索
- 自定义数据结构 链表(单项 ,双向,环形)
百合不是茶
单项链表双向链表
链表与动态数组的实现方式差不多, 数组适合快速删除某个元素 链表则可以快速的保存数组并且可以是不连续的
单项链表;数据从第一个指向最后一个
实现代码:
//定义动态链表
clas
- threadLocal实例
bijian1013
javathreadjava多线程threadLocal
实例1:
package com.bijian.thread;
public class MyThread extends Thread {
private static ThreadLocal tl = new ThreadLocal() {
protected synchronized Object initialValue() {
return new Inte
- activemq安全设置—设置admin的用户名和密码
bijian1013
javaactivemq
ActiveMQ使用的是jetty服务器, 打开conf/jetty.xml文件,找到
<bean id="adminSecurityConstraint" class="org.eclipse.jetty.util.security.Constraint">
<p
- 【Java范型一】Java范型详解之范型集合和自定义范型类
bit1129
java
本文详细介绍Java的范型,写一篇关于范型的博客原因有两个,前几天要写个范型方法(返回值根据传入的类型而定),竟然想了半天,最后还是从网上找了个范型方法的写法;再者,前一段时间在看Gson, Gson这个JSON包的精华就在于对范型的优雅简单的处理,看它的源代码就比较迷糊,只其然不知其所以然。所以,还是花点时间系统的整理总结下范型吧。
范型内容
范型集合类
范型类
- 【HBase十二】HFile存储的是一个列族的数据
bit1129
hbase
在HBase中,每个HFile存储的是一个表中一个列族的数据,也就是说,当一个表中有多个列簇时,针对每个列簇插入数据,最后产生的数据是多个HFile,每个对应一个列族,通过如下操作验证
1. 建立一个有两个列族的表
create 'members','colfam1','colfam2'
2. 在members表中的colfam1中插入50*5
- Nginx 官方一个配置实例
ronin47
nginx 配置实例
user www www;
worker_processes 5;
error_log logs/error.log;
pid logs/nginx.pid;
worker_rlimit_nofile 8192;
events {
worker_connections 4096;}
http {
include conf/mim
- java-15.输入一颗二元查找树,将该树转换为它的镜像, 即在转换后的二元查找树中,左子树的结点都大于右子树的结点。 用递归和循环
bylijinnan
java
//use recursion
public static void mirrorHelp1(Node node){
if(node==null)return;
swapChild(node);
mirrorHelp1(node.getLeft());
mirrorHelp1(node.getRight());
}
//use no recursion bu
- 返回null还是empty
bylijinnan
javaapachespring编程
第一个问题,函数是应当返回null还是长度为0的数组(或集合)?
第二个问题,函数输入参数不当时,是异常还是返回null?
先看第一个问题
有两个约定我觉得应当遵守:
1.返回零长度的数组或集合而不是null(详见《Effective Java》)
理由就是,如果返回empty,就可以少了很多not-null判断:
List<Person> list
- [科技与项目]工作流厂商的战略机遇期
comsci
工作流
在新的战略平衡形成之前,这里有一个短暂的战略机遇期,只有大概最短6年,最长14年的时间,这段时间就好像我们森林里面的小动物,在秋天中,必须抓紧一切时间存储坚果一样,否则无法熬过漫长的冬季。。。。
在微软,甲骨文,谷歌,IBM,SONY
- 过度设计-举例
cuityang
过度设计
过度设计,需要更多设计时间和测试成本,如无必要,还是尽量简洁一些好。
未来的事情,比如 访问量,比如数据库的容量,比如是否需要改成分布式 都是无法预料的
再举一个例子,对闰年的判断逻辑:
1、 if($Year%4==0) return True; else return Fasle;
2、if ( ($Year%4==0 &am
- java进阶,《Java性能优化权威指南》试读
darkblue086
java性能优化
记得当年随意读了微软出版社的.NET 2.0应用程序调试,才发现调试器如此强大,应用程序开发调试其实真的简单了很多,不仅仅是因为里面介绍了很多调试器工具的使用,更是因为里面寻找问题并重现问题的思想让我震撼,时隔多年,Java已经如日中天,成为许多大型企业应用的首选,而今天,这本《Java性能优化权威指南》让我再次找到了这种感觉,从不经意的开发过程让我刮目相看,原来性能调优不是简单地看看热点在哪里,
- 网络学习笔记初识OSI七层模型与TCP协议
dcj3sjt126com
学习笔记
协议:在计算机网络中通信各方面所达成的、共同遵守和执行的一系列约定 计算机网络的体系结构:计算机网络的层次结构和各层协议的集合。 两类服务: 面向连接的服务通信双方在通信之前先建立某种状态,并在通信过程中维持这种状态的变化,同时为服务对象预先分配一定的资源。这种服务叫做面向连接的服务。 面向无连接的服务通信双方在通信前后不建立和维持状态,不为服务对象
- mac中用命令行运行mysql
dcj3sjt126com
mysqllinuxmac
参考这篇博客:http://www.cnblogs.com/macro-cheng/archive/2011/10/25/mysql-001.html 感觉workbench不好用(有点先入为主了)。
1,安装mysql
在mysql的官方网站下载 mysql 5.5.23 http://www.mysql.com/downloads/mysql/,根据我的机器的配置情况选择了64
- MongDB查询(1)——基本查询[五]
eksliang
mongodbmongodb 查询mongodb find
MongDB查询
转载请出自出处:http://eksliang.iteye.com/blog/2174452 一、find简介
MongoDB中使用find来进行查询。
API:如下
function ( query , fields , limit , skip, batchSize, options ){.....}
参数含义:
query:查询参数
fie
- base64,加密解密 经融加密,对接
y806839048
经融加密对接
String data0 = new String(Base64.encode(bo.getPaymentResult().getBytes(("GBK"))));
String data1 = new String(Base64.decode(data0.toCharArray()),"GBK");
// 注意编码格式,注意用于加密,解密的要是同
- JavaWeb之JSP概述
ihuning
javaweb
什么是JSP?为什么使用JSP?
JSP表示Java Server Page,即嵌有Java代码的HTML页面。使用JSP是因为在HTML中嵌入Java代码比在Java代码中拼接字符串更容易、更方便和更高效。
JSP起源
在很多动态网页中,绝大部分内容都是固定不变的,只有局部内容需要动态产生和改变。
如果使用Servl
- apple watch 指南
啸笑天
apple
1. 文档
WatchKit Programming Guide(中译在线版 By @CocoaChina) 译文 译者 原文 概览 - 开始为 Apple Watch 进行开发 @星夜暮晨 Overview - Developing for Apple Watch 概览 - 配置 Xcode 项目 - Overview - Configuring Yo
- java经典的基础题目
macroli
java编程
1.列举出 10个JAVA语言的优势 a:免费,开源,跨平台(平台独立性),简单易用,功能完善,面向对象,健壮性,多线程,结构中立,企业应用的成熟平台, 无线应用 2.列举出JAVA中10个面向对象编程的术语 a:包,类,接口,对象,属性,方法,构造器,继承,封装,多态,抽象,范型 3.列举出JAVA中6个比较常用的包 Java.lang;java.util;java.io;java.sql;ja
- 你所不知道神奇的js replace正则表达式
qiaolevip
每天进步一点点学习永无止境纵观千象regex
var v = 'C9CFBAA3CAD0';
console.log(v);
var arr = v.split('');
for (var i = 0; i < arr.length; i ++) {
if (i % 2 == 0) arr[i] = '%' + arr[i];
}
console.log(arr.join(''));
console.log(v.r
- [一起学Hive]之十五-分析Hive表和分区的统计信息(Statistics)
superlxw1234
hivehive分析表hive统计信息hive Statistics
关键字:Hive统计信息、分析Hive表、Hive Statistics
类似于Oracle的分析表,Hive中也提供了分析表和分区的功能,通过自动和手动分析Hive表,将Hive表的一些统计信息存储到元数据中。
表和分区的统计信息主要包括:行数、文件数、原始数据大小、所占存储大小、最后一次操作时间等;
14.1 新表的统计信息
对于一个新创建
- Spring Boot 1.2.5 发布
wiselyman
spring boot
Spring Boot 1.2.5已在7月2日发布,现在可以从spring的maven库和maven中心库下载。
这个版本是一个维护的发布版,主要是一些修复以及将Spring的依赖提升至4.1.7(包含重要的安全修复)。
官方建议所有的Spring Boot用户升级这个版本。
项目首页 | 源