- Nginx 接入 Keepalived 实现高可用,让你的网站稳如泰山!
OutOfMemory~~
nginx服务器前端
一、往期内容回顾前面提到nginx可以实现后端服务的负载均衡,来使得后端的服务能力得到水平的扩展。但是怎么保证nginx的高可用呢,如果nginx挂了,还怎么持续提供服务呢?今天我们就来讲一讲Keepalived实现高可用的方案。二、什么是高可用?Keepalived高可用架构是什么?简单来说,高可用就是让你的网站服务时刻在线,即使出现硬件故障、网络波动等问题,也能快速恢复,保证用户访问不受影响。
- 景联文科技提供高质量文本标注服务,驱动AI技术发展
景联文科技
科技人工智能
文本标注是指在原始文本数据上添加标签的过程,这些标签可以用来指示特定的实体、关系、事件等信息,以帮助计算机理解和处理这些数据。文本标注是自然语言处理(NLP)领域的一个重要环节,它通过为文本的不同部分提供具体的含义和上下文信息,增强机器学习和深度学习模型对文本内容的理解能力。标注类型情感分析情感极性:确定文本表达的情感倾向,如正面、负面或中立。强度评估:衡量情感的强烈程度,从轻微到极端不等。命名实
- 春招,作为普通IT实习生的我有哪些想法和准备?
十八朵郁金香
学习
想法&随记对即将毕业的大学生来说,秋招和春招是求职的好机会,也是一次尝试向社会进行"自我推销"的机会,体现自己的综合能力,是“意满签Offer”?还是“露出马脚,社死场面”?“准备-天时地利人和-行动”后,我们会有答案。话题回到自己,春招,我有哪些想法?去年,在学校举办校园秋招招聘之前,我已经通过线上投递+线下面试找到实习,在一家人数规模100~200的公司当前端实习生,到现在已有四个多月,没有经
- 探索AI模型的巅峰之战:ChatGPT、DeepSeek与Grok 3,谁才是最强?
温暖阳光阿斌
人工智能chatgpt
近年来,人工智能领域正处于一场高速迭代的革命中。大型语言模型(LLMs)如ChatGPT、DeepSeek和Grok3纷纷亮相,各展所长,为人们带来了前所未有的体验。在这场"谁是最强"的竞争中,每一方都展现出了令人惊叹的能力和独特的优势。然而,这些模型之间的差异和特点,究竟是什么?它们各自的优势在哪里?又有哪些隐藏的短板?本文将带您深入了解这三位AI巨头的亮点与争议,共同探讨它们在AI领域的位置,
- 一文说清预训练与微调:AI的双重训练法则
TGITCIC
AI-大模型的落地之道人工智能深度学习
什么是预训练?预训练是大型语言模型训练的第一步。它在资金和计算能力的支持下,通过深入分析大量的文本数据,使模型建立起语言的基本构架。在这一阶段,模型通过学习海量的书籍、文章和网页,识别出语言的语法、句法和词汇规律。这就如同一名学生接受通识教育,他并没有专注于某一门学科,而是获取了多方面的知识。自回归语言建模和掩码语言建模是预训练中常见的两种方法。前者在逐步构建文本的连贯性时,通过预测下一单词的方式
- 中小制造企业必看!MES管理系统破解车间管理四大难题指南
深蓝易网
数字工厂制造人工智能大数据运维devops
在制造业竞争日益激烈的今天,生产车间的低效与混乱已成为制约企业发展的关键瓶颈。计划频繁变更、异常频发、资源浪费等问题不仅导致成本攀升,更直接影响订单交付与客户信任。如何实现生产透明化、管理精细化?MES系统(制造执行系统)凭借其数据驱动与全流程协同能力,正成为企业突破困局的利器。本文将从四大核心痛点切入,深度解析MES管理系统的破局之道。痛点一:计划脱离实际,排产如同“盲人摸象”传统排产模式下,计
- 如何使用LangChain流式处理工具事件
fgayif
langchainjava前端python
在AI开发中,实时处理和监听事件是一项关键能力,特别是在处理复杂的模型和工具链时。本文将向您展示如何使用LangChain框架流式处理自定义工具中的事件,以便更好地监控和调试模型的内部状态。技术背景介绍LangChain是一个用于构建和操作语言模型的工具库,其中astream_events()方法能帮助我们监听和处理来自模型的事件流。了解如何正确地配置这些事件对于调试和高级应用至关重要,尤其是在运
- 介于YOLOv5的裂缝识别系统
程序员~小强
YOLO
介于YOLOv5的裂缝识别系统在现代工业中,裂缝监测是的保障设施安全的重要环节。我们公司的新项目——基于YOLOv5的裂缝识别系统,将为您提供高效、精准的解决方案,助力各类工程项目的质量管理。系统优势我们的裂缝识别系统借助YOLOv5进行深度学习,经过精心训练,拥有强大的图像识别能力。只需简单的步骤,您就能将复杂的裂缝检测转化为轻松的操作,让分析变得更加简单、高效。核心功能图片上传与场景选择用户可
- 初识HTTP
思考的橙子
后端http网络协议网络
HTTP概念:HyperTextTransferProtocol,超文本传输协议,规定了浏览器和服务器之间数据传输的规则HTTP协议特点:1.基于TCP协议:面向连接,安全2.基于请求-响应模型的:一次请求对应一次响应3.HTTP协议是无状态的协议:对于事务处理没有记忆能力。每次请求-响应都是独立的。缺点:多次请求间不能共享数据。优点:速度快HTTP-请求数据格式请求数据分为3部分:1.请求行:请
- 如何使用JSON输出解析器解析语言模型的输出
vaidfl
json语言模型easyuipython
在现代AI应用中,让语言模型返回结构化的数据是一个重要的能力,特别是在需要进一步处理或集成的时候。本文将深入探讨如何利用JsonOutputParser来解析语言模型的JSON输出。技术背景介绍随着语言模型的普及,许多应用场景需要从自然语言处理任务中获取结构化的输出。针对这一需求,输出解析器应运而生,它能够帮助我们定义JSON模式,通过提示语言模型生成符合该模式的输出,并将其解析为JSON格式。核
- Hadoop 集群规划与部署最佳实践
AI天才研究院
Python实战DeepSeekR1&大数据AI人工智能大模型自然语言处理人工智能语言模型编程实践开发语言架构设计
作者:禅与计算机程序设计艺术1.简介2009年2月2日,ApacheHadoop项目诞生。它是一个开源的分布式系统基础架构,用于存储、处理和分析海量的数据。Hadoop具有高容错性、可靠性、可扩展性、适应性等特征,因而广泛应用于数据仓库、日志分析、网络流量监测、推荐引擎、搜索引擎等领域。由于Hadoop采用“分而治之”的架构设计理念,因此可以轻松应对数据量、计算能力和存储成本的增长。2013年底,
- Kafka扩分区和分区副本重分配之后消费组会自动均衡吗?
石臻臻的杂货铺
Kafkakafka消费者
作者:石臻臻,CSDN博客之星Top5、KafkaContributor、nacosContributor、华为云MVP,腾讯云TVP,滴滴Kafka技术专家、KnowStreamingPMC)。KnowStreaming是滴滴开源的Kafka运维管控平台,有兴趣一起参与参与开发的同学,但是怕自己能力不够的同学,可以联系我,带你一起你参与开源!。KnowStreaming体验环境请访问:
- LLM:软件测试的颠覆性力量
AI天才研究院
DeepSeekR1&大数据AI人工智能大模型AI大模型企业级应用开发实战计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
LLM:软件测试的颠覆性力量关键词:大语言模型(LLM)、软件测试、人工智能、测试自动化、测试效率、质量保证、测试革新1.背景介绍在当今快速发展的软件行业中,测试一直是确保产品质量的关键环节。随着人工智能技术的飞速进步,特别是大语言模型(LargeLanguageModels,简称LLM)的出现,软件测试领域正经历着前所未有的变革。LLM凭借其强大的自然语言处理能力和广泛的知识储备,正在重塑我们对
- 人工智能 - 通用 AI Agent 之 LangManus、Manus、OpenManus 和 OWL 技术选型
天机️灵韵
具身智能人工智能人工智能具身智能智能体
一、核心项目概览1.Manus(闭源通用AIAgent)定位:全球首个全流程自动化通用AIAgent,GAIA基准测试SOTA水平。核心能力:全流程自动化:从任务规划(如撰写报告)到执行(代码生成、表格制作)的端到端处理。智能纠错机制:基于沙箱环境的实时错误反思与调整(类似CodeAct技术)。云端依赖:需联网运行,集成浏览器操作、信息检索等工具。局限性:闭源且采用邀请制,二手市场邀请码溢价至数万
- Multisim在射频电路仿真与实验教学中的应用探究
She Ran 546
课程设计
摘要本文深入探究Multisim在射频电路仿真与实验教学中的应用。阐述Multisim软件在射频领域的功能特点,通过具体射频电路实验案例,详细说明如何运用Multisim进行电路搭建、参数设置与仿真分析。探讨其在实验教学中对学生理解射频电路原理、提升实践能力的积极作用,以及在丰富教学手段、提高教学质量方面的显著优势,为射频电路实验教学改革提供新思路与方法。关键词Multisim;射频电路;仿真;实
- 如何用Function Calling解锁OpenAI的「真实世界」交互能力?(附Node.js 实战)
hongkid
AI编程
一、FunctionCalling:大模型的「手脚延伸器」1.1核心定义FunctionCalling是OpenAI在2023年6月13日推出的革命性功能(对应模型版本gpt-3.5-turbo-0613和gpt-4-0613),允许开发者通过自然语言指令触发预定义函数,实现大模型与现实世界系统的交互。如同给语言模型安装「手脚」,使其不仅能思考,还能执行具体操作。openai官方说明:https:
- 计算机毕业设计指南
晴天毕设
课程设计毕业设计java毕设开发语言
毕业设计是计算机专业学生展示综合能力的重要环节,不仅是对所学知识的总结,也是进入职场或深造前的实战演练。本文将从选题、需求分析、系统设计、编码实现、测试优化、论文撰写、答辩准备等方面,为你提供一份详细的毕业设计指南。如果有其他问题,可以点击文章末尾名片咨询,可免费分享源码1.选题阶段选题是毕业设计的起点,直接影响后续工作的难度和完成质量。选题原则兴趣驱动:选择自己感兴趣的方向,能够激发研究动力。创
- PyTorch数据归一化处理:transforms
2401_87555420
pytorch人工智能python
##1.数据归一化处理:transforms.Normalize###1.1理解torchvision*torchvision.transforms:常用的图像预处理方法*torchvision.datasets:常用的数据集Dataset实现*torchvision.models:常用的CV(预训练)模型实现torchvision.transforms:常用的数据预处理方法,提升泛化能力,包括:
- 探索数据安全新境界:Apache Spark SQL Ranger Security插件深度揭秘
乌昱有Melanie
探索数据安全新境界:ApacheSparkSQLRangerSecurity插件深度揭秘项目地址:https://gitcode.com/gh_mirrors/sp/spark-ranger随着大数据的爆炸性增长,数据安全性成为了企业不可忽视的核心议题。在这一背景下,【ApacheSparkSQLRangerSecurityPlugin】以其强大的数据访问控制能力脱颖而出,成为数据处理领域的明星级
- 深入解析深度学习中的过拟合与欠拟合诊断、解决与工程实践
古月居GYH
深度学习人工智能
一、引言:模型泛化能力的核心挑战在深度学习模型开发中,欠拟合与过拟合是影响泛化能力的两个核心矛盾。据GoogleBrain研究统计,工业级深度学习项目中有63%的失败案例与这两个问题直接相关。本文将从基础概念到工程实践,系统解析其本质特征、诊断方法及解决方案,并辅以可复现的代码案例。二、核心概念与通熟易懂解释简单而言,欠拟合是指模型不能在训练集上获得足够低的误差。换句换说,就是模型复杂度低,模型在
- 深入探讨盘古大模型的高精度多尺度能力
Hardess-god
WRF人工智能算法
随着人工智能技术的快速发展,大模型的研究逐渐进入新的阶段。其中,盘古大模型以其卓越的高精度和多尺度处理能力成为研究热点。本文将详细分析盘古模型在高精度多尺度问题上的技术特征、优势和应用潜力,并探讨其深入研究的方向。一、盘古模型概述盘古模型是华为推出的中文预训练大模型系列,拥有数十亿甚至千亿级的参数规模。它以Transformer架构为基础,通过海量文本数据进行训练,表现出优异的自然语言理解和生成能
- 重塑家用机器人大脑!云鲸旗舰机型逍遥002搭载旭日5正式开售
量子位
2025年3月20日,全球家庭清洁机器人明星品牌云鲸智能携最新一代旗舰机型——云鲸逍遥002,亮相中国家电及消费电子博览会(AWE)。该产品以”AI智能深度清洁“为核心,基于地瓜机器人全新一代旭日5智能计算芯片,推出首创的双目AI视觉感知自适应系统,以10TOPs的端侧算力与180万点/秒的3D稠密深度点云生成能力,为家庭场景带来毫米级障碍测距精度与语义级环境理解,是家庭清洁机器人智能化演进的又一
- 量子位招聘 | DeepSeek帮我们改的招聘启事
量子位
关注前沿科技量子位未来同事,你好~这是一则招聘帖。如果你与我们志同道合,对AI大模型、具身智能、终端硬件、AI新媒体编辑感兴趣,我们正在招聘这些领域的原创作者。以下岗位均为全职,工作地点:北京中关村。岗位面向:社招、应届毕业生,所有岗位均可实习——表现出色均可转正加分项:乐于探索AI新工具,善用AI新工具;拥有解读论文的能力,能深入浅出讲解原理;有写代码能力;量子位长期读者。加入我们,你可以获得:
- LLM的工具调用能力(如Function Calling)
maxmaxma
前端javascript开发语言
LLM的工具调用能力(如FunctionCalling)是增强大模型实用性的核心技术,使其能够通过生成结构化指令与外部系统交互。以下是关键要点及技术解析:一、工具调用的定义与原理核心机制LLM通过生成符合工具接口的指令(如JSON参数),触发外部工具执行。例如,用户提问天气时,模型生成{"location":"北京","date":"2025-03-22"},系统调用天气API获取数据。分工明确:
- 使用Python和LangChain构建检索增强生成(RAG)应用的详细指南
m0_57781768
pythonlangchain搜索引擎
使用Python和LangChain构建检索增强生成(RAG)应用的详细指南引言在人工智能和自然语言处理领域,利用大语言模型(LLM)构建复杂的问答(Q&A)系统是一个重要应用。检索增强生成(RetrievalAugmentedGeneration,RAG)是一种技术,通过将模型知识与额外数据结合来增强LLM的能力,使其能够回答关于特定源信息的问题。这些应用不仅限于公开数据,还可以处理私有数据和模
- 使用LangChain实现基于LLM和RAG的PDF问答系统
张同学吧
langchain语言模型
目录前言一.大语言模型(LLM)1.什么是LLM?2.LLM的能力与特点二、增强检索生成(RAG)三.什么是LangChain?1.LangChain的核心功能2.LangChain的优势3.LangChain的应用场景4.总结四.使用LangChain实现基于PDF的问答系统前言本文将介绍LLM和RAG的基本概念,并通过一个实际的代码示例,展示如何使用LangChain构建一个基于PDF文档的问
- 基于ChatGPT、GIS与Python机器学习的地质灾害风险评估、易发性分析、信息化建库及灾后重建高级实践
weixin_贾
防洪评价风险评估滑坡泥石流地质灾害
第一章、ChatGPT、DeepSeek大语言模型提示词与地质灾害基础及平台介绍【基础实践篇】1、什么是大模型?大模型(LargeLanguageModel,LLM)是一种基于深度学习技术的大规模自然语言处理模型。代表性大模型:GPT-4、BERT、T5、ChatGPT等。特点:多任务能力:可以完成文本生成、分类、翻译、问答等任务。上下文理解:能理解复杂的上下文信息。广泛适配性:适合科研、教育、行
- DeepSeek API在AutoCAD中的创新应用与挑战
CodeJourney.
数据库算法人工智能
在数字化设计领域,随着人工智能技术的飞速发展,将AI能力融入传统设计软件成为提升设计效率和质量的重要趋势。AutoCAD作为广泛应用的计算机辅助设计软件,与DeepSeekAPI的结合展现出了巨大的潜力。这种融合不仅为设计工作带来了全新的思路和方法,还在多个方面对设计流程进行了优化和创新。一、DeepSeekAPI赋能AutoCAD的多元应用场景(一)智能设计辅助:让创意快速落地在传统设计过程中,
- AI 赋能应急管理:ChatGPT、DeepSeek、Grok 的应用探索
一ge科研小菜菜
人工智能人工智能
个人主页:一ge科研小菜鸡-CSDN博客期待您的关注1.引言随着人工智能(AI)技术的快速发展,大语言模型(LLM)在应急管理领域的应用逐步扩大。ChatGPT、DeepSeek、Grok等AI模型凭借强大的文本处理、数据分析和推理能力,可为灾害预警、应急响应、风险评估等提供高效支持。本文将对比三大AI模型在应急管理中的优势,并探讨其在未来智能化应急管理体系中的应用前景。2.应急管理中的核心挑战应
- 一文说清楚什么是预训练(Pre-Training)、微调(Fine-Tuning),零基础小白建议收藏!!
小城哇哇
人工智能语言模型AI大模型大模型微调预训练agiLLM
前言预训练和微调是现代AI模型的核心技术,通过两者的结合,机器能够在处理复杂任务时表现得更为高效和精准。预训练为模型提供了广泛的语言能力,而微调则确保了模型能够根据特定任务进行细化和优化。近年来,人工智能(AI)在各个领域的突破性进展,尤其是在自然语言处理(NLP)方面,引起了广泛关注。两项重要的技术方法——预训练和微调,成为了AI模型发展的基石。预训练通常是指在大规模数据集上进行模型训练,以帮助
- Spring的注解积累
yijiesuifeng
spring注解
用注解来向Spring容器注册Bean。
需要在applicationContext.xml中注册:
<context:component-scan base-package=”pagkage1[,pagkage2,…,pagkageN]”/>。
如:在base-package指明一个包
<context:component-sc
- 传感器
百合不是茶
android传感器
android传感器的作用主要就是来获取数据,根据得到的数据来触发某种事件
下面就以重力传感器为例;
1,在onCreate中获得传感器服务
private SensorManager sm;// 获得系统的服务
private Sensor sensor;// 创建传感器实例
@Override
protected void
- [光磁与探测]金吕玉衣的意义
comsci
这是一个古代人的秘密:现在告诉大家
信不信由你们:
穿上金律玉衣的人,如果处于灵魂出窍的状态,可以飞到宇宙中去看星星
这就是为什么古代
- 精简的反序打印某个数
沐刃青蛟
打印
以前看到一些让求反序打印某个数的程序。
比如:输入123,输出321。
记得以前是告诉你是几位数的,当时就抓耳挠腮,完全没有思路。
似乎最后是用到%和/方法解决的。
而今突然想到一个简短的方法,就可以实现任意位数的反序打印(但是如果是首位数或者尾位数为0时就没有打印出来了)
代码如下:
long num, num1=0;
- PHP:6种方法获取文件的扩展名
IT独行者
PHP扩展名
PHP:6种方法获取文件的扩展名
1、字符串查找和截取的方法
1
$extension
=
substr
(
strrchr
(
$file
,
'.'
), 1);
2、字符串查找和截取的方法二
1
$extension
=
substr
- 面试111
文强chu
面试
1事务隔离级别有那些 ,事务特性是什么(问到一次)
2 spring aop 如何管理事务的,如何实现的。动态代理如何实现,jdk怎么实现动态代理的,ioc是怎么实现的,spring是单例还是多例,有那些初始化bean的方式,各有什么区别(经常问)
3 struts默认提供了那些拦截器 (一次)
4 过滤器和拦截器的区别 (频率也挺高)
5 final,finally final
- XML的四种解析方式
小桔子
domjdomdom4jsax
在平时工作中,难免会遇到把 XML 作为数据存储格式。面对目前种类繁多的解决方案,哪个最适合我们呢?在这篇文章中,我对这四种主流方案做一个不完全评测,仅仅针对遍历 XML 这块来测试,因为遍历 XML 是工作中使用最多的(至少我认为)。 预 备 测试环境: AMD 毒龙1.4G OC 1.5G、256M DDR333、Windows2000 Server
- wordpress中常见的操作
aichenglong
中文注册wordpress移除菜单
1 wordpress中使用中文名注册解决办法
1)使用插件
2)修改wp源代码
进入到wp-include/formatting.php文件中找到
function sanitize_user( $username, $strict = false
- 小飞飞学管理-1
alafqq
管理
项目管理的下午题,其实就在提出问题(挑刺),分析问题,解决问题。
今天我随意看下10年上半年的第一题。主要就是项目经理的提拨和培养。
结合我自己经历写下心得
对于公司选拔和培养项目经理的制度有什么毛病呢?
1,公司考察,选拔项目经理,只关注技术能力,而很少或没有关注管理方面的经验,能力。
2,公司对项目经理缺乏必要的项目管理知识和技能方面的培训。
3,公司对项目经理的工作缺乏进行指
- IO输入输出部分探讨
百合不是茶
IO
//文件处理 在处理文件输入输出时要引入java.IO这个包;
/*
1,运用File类对文件目录和属性进行操作
2,理解流,理解输入输出流的概念
3,使用字节/符流对文件进行读/写操作
4,了解标准的I/O
5,了解对象序列化
*/
//1,运用File类对文件目录和属性进行操作
//在工程中线创建一个text.txt
- getElementById的用法
bijian1013
element
getElementById是通过Id来设置/返回HTML标签的属性及调用其事件与方法。用这个方法基本上可以控制页面所有标签,条件很简单,就是给每个标签分配一个ID号。
返回具有指定ID属性值的第一个对象的一个引用。
语法:
&n
- 励志经典语录
bijian1013
励志人生
经典语录1:
哈佛有一个著名的理论:人的差别在于业余时间,而一个人的命运决定于晚上8点到10点之间。每晚抽出2个小时的时间用来阅读、进修、思考或参加有意的演讲、讨论,你会发现,你的人生正在发生改变,坚持数年之后,成功会向你招手。不要每天抱着QQ/MSN/游戏/电影/肥皂剧……奋斗到12点都舍不得休息,看就看一些励志的影视或者文章,不要当作消遣;学会思考人生,学会感悟人生
- [MongoDB学习笔记三]MongoDB分片
bit1129
mongodb
MongoDB的副本集(Replica Set)一方面解决了数据的备份和数据的可靠性问题,另一方面也提升了数据的读写性能。MongoDB分片(Sharding)则解决了数据的扩容问题,MongoDB作为云计算时代的分布式数据库,大容量数据存储,高效并发的数据存取,自动容错等是MongoDB的关键指标。
本篇介绍MongoDB的切片(Sharding)
1.何时需要分片
&nbs
- 【Spark八十三】BlockManager在Spark中的使用场景
bit1129
manager
1. Broadcast变量的存储,在HttpBroadcast类中可以知道
2. RDD通过CacheManager存储RDD中的数据,CacheManager也是通过BlockManager进行存储的
3. ShuffleMapTask得到的结果数据,是通过FileShuffleBlockManager进行管理的,而FileShuffleBlockManager最终也是使用BlockMan
- yum方式部署zabbix
ronin47
yum方式部署zabbix
安装网络yum库#rpm -ivh http://repo.zabbix.com/zabbix/2.4/rhel/6/x86_64/zabbix-release-2.4-1.el6.noarch.rpm 通过yum装mysql和zabbix调用的插件还有agent代理#yum install zabbix-server-mysql zabbix-web-mysql mysql-
- Hibernate4和MySQL5.5自动创建表失败问题解决方法
byalias
J2EEHibernate4
今天初学Hibernate4,了解了使用Hibernate的过程。大体分为4个步骤:
①创建hibernate.cfg.xml文件
②创建持久化对象
③创建*.hbm.xml映射文件
④编写hibernate相应代码
在第四步中,进行了单元测试,测试预期结果是hibernate自动帮助在数据库中创建数据表,结果JUnit单元测试没有问题,在控制台打印了创建数据表的SQL语句,但在数据库中
- Netty源码学习-FrameDecoder
bylijinnan
javanetty
Netty 3.x的user guide里FrameDecoder的例子,有几个疑问:
1.文档说:FrameDecoder calls decode method with an internally maintained cumulative buffer whenever new data is received.
为什么每次有新数据到达时,都会调用decode方法?
2.Dec
- SQL行列转换方法
chicony
行列转换
create table tb(终端名称 varchar(10) , CEI分值 varchar(10) , 终端数量 int)
insert into tb values('三星' , '0-5' , 74)
insert into tb values('三星' , '10-15' , 83)
insert into tb values('苹果' , '0-5' , 93)
- 中文编码测试
ctrain
编码
循环打印转换编码
String[] codes = {
"iso-8859-1",
"utf-8",
"gbk",
"unicode"
};
for (int i = 0; i < codes.length; i++) {
for (int j
- hive 客户端查询报堆内存溢出解决方法
daizj
hive堆内存溢出
hive> select * from t_test where ds=20150323 limit 2;
OK
Exception in thread "main" java.lang.OutOfMemoryError: Java heap space
问题原因: hive堆内存默认为256M
这个问题的解决方法为:
修改/us
- 人有多大懒,才有多大闲 (评论『卓有成效的程序员』)
dcj3sjt126com
程序员
卓有成效的程序员给我的震撼很大,程序员作为特殊的群体,有的人可以这么懒, 懒到事情都交给机器去做 ,而有的人又可以那么勤奋,每天都孜孜不倦得做着重复单调的工作。
在看这本书之前,我属于勤奋的人,而看完这本书以后,我要努力变成懒惰的人。
不要在去庞大的开始菜单里面一项一项搜索自己的应用程序,也不要在自己的桌面上放置眼花缭乱的快捷图标
- Eclipse简单有用的配置
dcj3sjt126com
eclipse
1、显示行号 Window -- Prefences -- General -- Editors -- Text Editors -- show line numbers
2、代码提示字符 Window ->Perferences,并依次展开 Java -> Editor -> Content Assist,最下面一栏 auto-Activation
- 在tomcat上面安装solr4.8.0全过程
eksliang
Solrsolr4.0后的版本安装solr4.8.0安装
转载请出自出处:
http://eksliang.iteye.com/blog/2096478
首先solr是一个基于java的web的应用,所以安装solr之前必须先安装JDK和tomcat,我这里就先省略安装tomcat和jdk了
第一步:当然是下载去官网上下载最新的solr版本,下载地址
- Android APP通用型拒绝服务、漏洞分析报告
gg163
漏洞androidAPP分析
点评:记得曾经有段时间很多SRC平台被刷了大量APP本地拒绝服务漏洞,移动安全团队爱内测(ineice.com)发现了一个安卓客户端的通用型拒绝服务漏洞,来看看他们的详细分析吧。
0xr0ot和Xbalien交流所有可能导致应用拒绝服务的异常类型时,发现了一处通用的本地拒绝服务漏洞。该通用型本地拒绝服务可以造成大面积的app拒绝服务。
针对序列化对象而出现的拒绝服务主要
- HoverTree项目已经实现分层
hvt
编程.netWebC#ASP.ENT
HoverTree项目已经初步实现分层,源代码已经上传到 http://hovertree.codeplex.com请到SOURCE CODE查看。在本地用SQL Server 2008 数据库测试成功。数据库和表请参考:http://keleyi.com/a/bjae/ue6stb42.htmHoverTree是一个ASP.NET 开源项目,希望对你学习ASP.NET或者C#语言有帮助,如果你对
- Google Maps API v3: Remove Markers 移除标记
天梯梦
google maps api
Simply do the following:
I. Declare a global variable:
var markersArray = [];
II. Define a function:
function clearOverlays() {
for (var i = 0; i < markersArray.length; i++ )
- jQuery选择器总结
lq38366
jquery选择器
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40
- 基础数据结构和算法六:Quick sort
sunwinner
AlgorithmQuicksort
Quick sort is probably used more widely than any other. It is popular because it is not difficult to implement, works well for a variety of different kinds of input data, and is substantially faster t
- 如何让Flash不遮挡HTML div元素的技巧_HTML/Xhtml_网页制作
刘星宇
htmlWeb
今天在写一个flash广告代码的时候,因为flash自带的链接,容易被当成弹出广告,所以做了一个div层放到flash上面,这样链接都是a触发的不会被拦截,但发现flash一直处于div层上面,原来flash需要加个参数才可以。
让flash置于DIV层之下的方法,让flash不挡住飘浮层或下拉菜单,让Flash不档住浮动对象或层的关键参数:wmode=opaque。
方法如下:
- Mybatis实用Mapper SQL汇总示例
wdmcygah
sqlmysqlmybatis实用
Mybatis作为一个非常好用的持久层框架,相关资料真的是少得可怜,所幸的是官方文档还算详细。本博文主要列举一些个人感觉比较常用的场景及相应的Mapper SQL写法,希望能够对大家有所帮助。
不少持久层框架对动态SQL的支持不足,在SQL需要动态拼接时非常苦恼,而Mybatis很好地解决了这个问题,算是框架的一大亮点。对于常见的场景,例如:批量插入/更新/删除,模糊查询,多条件查询,联表查询,