目录
题目:860.柠檬水找零
题目链接:https://leetcode.cn/problems/lemonade-change/
题目:406.根据身高重建队列
题目链接:https://leetcode.cn/problems/queue-reconstruction-by-height/
题目:452. 用最少数量的箭引爆气球
题目链接:https://leetcode.cn/problems/minimum-number-of-arrows-to-burst-balloons/
在柠檬水摊上,每一杯柠檬水的售价为 5 美元。
顾客排队购买你的产品,(按账单 bills 支付的顺序)一次购买一杯。
每位顾客只买一杯柠檬水,然后向你付 5 美元、10 美元或 20 美元。你必须给每个顾客正确找零,也就是说净交易是每位顾客向你支付 5 美元。
注意,一开始你手头没有任何零钱。
如果你能给每位顾客正确找零,返回 true ,否则返回 false 。
示例 1:
- 输入:[5,5,5,10,20]
- 输出:true
- 解释:
- 前 3 位顾客那里,我们按顺序收取 3 张 5 美元的钞票。
- 第 4 位顾客那里,我们收取一张 10 美元的钞票,并返还 5 美元。
- 第 5 位顾客那里,我们找还一张 10 美元的钞票和一张 5 美元的钞票。
- 由于所有客户都得到了正确的找零,所以我们输出 true。
示例 2:
- 输入:[5,5,10]
- 输出:true
示例 3:
- 输入:[10,10]
- 输出:false
示例 4:
- 输入:[5,5,10,10,20]
- 输出:false
- 解释:
- 前 2 位顾客那里,我们按顺序收取 2 张 5 美元的钞票。
- 对于接下来的 2 位顾客,我们收取一张 10 美元的钞票,然后返还 5 美元。
- 对于最后一位顾客,我们无法退回 15 美元,因为我们现在只有两张 10 美元的钞票。
- 由于不是每位顾客都得到了正确的找零,所以答案是 false。
提示:
- 0 <= bills.length <= 10000
- bills[i] 不是 5 就是 10 或是 20
思路:题目中仔细说明了bills[i]共有3种取值,分别是5、10、20。 收到5块钱不用找零,收到10块钱需要找零5块,收到20块钱需要找零15块。如果是20块钱找零的话,局部最优是优先消耗一个10和一个5,因为10只能给20找零,5既可以给10找零,也可以给20找零,5更万能。
通过遍历账单数组,总共有三种情况:
我们可以定义三个变量来记录收到5块钱、10块钱、20块钱和找零的情况。
具体代码如下:
class Solution {
public:
bool lemonadeChange(vector& bills) {
int five = 0, ten = 0, twenty = 0;
for (int bill : bills) {
// 情况一
if (bill == 5) five++;
// 情况二
if (bill == 10) {
if (five <= 0) return false;
ten++;
five--;
}
// 情况三
if (bill == 20) {
// 优先消耗10美元,因为5美元的找零用处更大,能多留着就多留着
if (five > 0 && ten > 0) {
five--;
ten--;
twenty++; // 其实这行代码可以删了,因为记录20已经没有意义了,不会用20来找零
} else if (five >= 3) {
five -= 3;
twenty++; // 同理,这行代码也可以删了
} else return false;
}
}
return true;
}
};
假设有打乱顺序的一群人站成一个队列,数组 people 表示队列中一些人的属性(不一定按顺序)。每个 people[i] = [hi, ki] 表示第 i 个人的身高为 hi ,前面 正好 有 ki 个身高大于或等于 hi 的人。
请你重新构造并返回输入数组 people 所表示的队列。返回的队列应该格式化为数组 queue ,其中 queue[j] = [hj, kj] 是队列中第 j 个人的属性(queue[0] 是排在队列前面的人)。
示例 1:
- 输入:people = [[7,0],[4,4],[7,1],[5,0],[6,1],[5,2]]
- 输出:[[5,0],[7,0],[5,2],[6,1],[4,4],[7,1]]
- 解释:
- 编号为 0 的人身高为 5 ,没有身高更高或者相同的人排在他前面。
- 编号为 1 的人身高为 7 ,没有身高更高或者相同的人排在他前面。
- 编号为 2 的人身高为 5 ,有 2 个身高更高或者相同的人排在他前面,即编号为 0 和 1 的人。
- 编号为 3 的人身高为 6 ,有 1 个身高更高或者相同的人排在他前面,即编号为 1 的人。
- 编号为 4 的人身高为 4 ,有 4 个身高更高或者相同的人排在他前面,即编号为 0、1、2、3 的人。
- 编号为 5 的人身高为 7 ,有 1 个身高更高或者相同的人排在他前面,即编号为 1 的人。
- 因此 [[5,0],[7,0],[5,2],[6,1],[4,4],[7,1]] 是重新构造后的队列。
示例 2:
- 输入:people = [[6,0],[5,0],[4,0],[3,2],[2,2],[1,4]]
- 输出:[[4,0],[5,0],[2,2],[3,2],[1,4],[6,0]]
提示:
- 1 <= people.length <= 2000
- 0 <= hi <= 10^6
- 0 <= ki < people.length
题目数据确保队列可以被重建
思路:因为需要根据队列中的每个元素的身高和k值按要求重建队列,我们可以先只考虑一个因素进行排队,然后再考虑第二个因素。
我们先考虑身高,让身高从高到低进行排队。 (如果身高一样,k值不同呢?k小的在前面)
让身高高的人排在前面是因为想让身高高的人先进入队列, 后面身高低的人才能根据前面高的人来找自己的位置。
具体代码如下:
// 版本一
class Solution {
public:
static bool cmp(const vector& a, const vector& b) {
if (a[0] == b[0]) return a[1] < b[1];
return a[0] > b[0];
}
vector> reconstructQueue(vector>& people) {
sort (people.begin(), people.end(), cmp);
vector> que;
for (int i = 0; i < people.size(); i++) {
int position = people[i][1];
que.insert(que.begin() + position, people[i]);
}
return que;
}
};
时间复杂度:O(nlog n + n^2)
空间复杂度:O(n)
但使用vector是非常费时的,C++中vector(可以理解是一个动态数组,底层是普通数组实现的)如果插入元素数目大于预先普通数组大小,vector底部会有一个扩容的操作,即申请两倍于原先普通数组的大小,然后把数据拷贝到另一个更大的数组上。
所以使用vector(动态数组)来insert,是费时的,插入再拷贝的话,单纯一个插入的操作就是O(n^2)了,甚至可能拷贝好几次,就不止O(n^2)了。
改用链表:
// 版本二
class Solution {
public:
// 身高从大到小排(身高相同k小的站前面)
static bool cmp(const vector& a, const vector& b) {
if (a[0] == b[0]) return a[1] < b[1];
return a[0] > b[0];
}
vector> reconstructQueue(vector>& people) {
sort (people.begin(), people.end(), cmp);
list> que; // list底层是链表实现,插入效率比vector高的多
for (int i = 0; i < people.size(); i++) {
int position = people[i][1]; // 插入到下标为position的位置
std::list>::iterator it = que.begin();
while (position--) { // 寻找在插入位置
it++;
}
que.insert(it, people[i]);
}
return vector>(que.begin(), que.end());
}
};
在二维空间中有许多球形的气球。对于每个气球,提供的输入是水平方向上,气球直径的开始和结束坐标。由于它是水平的,所以纵坐标并不重要,因此只要知道开始和结束的横坐标就足够了。开始坐标总是小于结束坐标。
一支弓箭可以沿着 x 轴从不同点完全垂直地射出。在坐标 x 处射出一支箭,若有一个气球的直径的开始和结束坐标为 xstart,xend, 且满足 xstart ≤ x ≤ xend,则该气球会被引爆。可以射出的弓箭的数量没有限制。 弓箭一旦被射出之后,可以无限地前进。我们想找到使得所有气球全部被引爆,所需的弓箭的最小数量。
给你一个数组 points ,其中 points [i] = [xstart,xend] ,返回引爆所有气球所必须射出的最小弓箭数。
示例 1:
- 输入:points = [[10,16],[2,8],[1,6],[7,12]]
- 输出:2
- 解释:对于该样例,x = 6 可以射爆 [2,8],[1,6] 两个气球,以及 x = 11 射爆另外两个气球
示例 2:
- 输入:points = [[1,2],[3,4],[5,6],[7,8]]
- 输出:4
示例 3:
- 输入:points = [[1,2],[2,3],[3,4],[4,5]]
- 输出:2
示例 4:
- 输入:points = [[1,2]]
- 输出:1
示例 5:
- 输入:points = [[2,3],[2,3]]
- 输出:1
提示:
- 0 <= points.length <= 10^4
- points[i].length == 2
- -2^31 <= xstart < xend <= 2^31 - 1
思路:这是一道区间重叠问题,为了让气球更好的重叠,需要对数组进行排序。如果气球重叠了,重叠气球中右边边界的最小值 之前的区间一定需要一个弓箭。
可以看出首先第一组重叠气球,一定是需要一个箭,气球3,的左边界大于了 第一组重叠气球的最小右边界,所以再需要一支箭来射气球3了。
class Solution {
private:
static bool cmp(const vector& a, const vector& b) {
return a[0] < b[0];
}
public:
int findMinArrowShots(vector>& points) {
if (points.size() == 0) return 0;
sort(points.begin(), points.end(), cmp);
int result = 1; // points 不为空至少需要一支箭
for (int i = 1; i < points.size(); i++) {
if (points[i][0] > points[i - 1][1]) { // 气球i和气球i-1不挨着,注意这里不是>=
result++; // 需要一支箭
}
else { // 气球i和气球i-1挨着
points[i][1] = min(points[i - 1][1], points[i][1]); // 更新重叠气球最小右边界
}
}
return result;
}
};
时间复杂度:O(nlog n),因为有一个快排
空间复杂度:O(1),有一个快排,最差情况(倒序)时,需要n次递归调用。因此确实需要O(n)的栈空间