位图文件可看成由4个部分组成:位图文件头(bitmap-file header)、位图信息头(bitmap-information header)、彩色表(color table)和定义位图的字节阵列,它具有如下所示的形式。
位图文件的组成 |
结构名称 |
符号 |
位图文件头(bitmap-file header) | BITMAPFILEHEADER | bmfh |
位图信息头(bitmap-information header) | BITMAPINFOHEADER | bmih |
彩色表(color table) | RGBQUAD | aColors[] |
图象数据阵列字节 | BYTE | aBitmapBits[] |
位图文件结构可综合在表6-01中。
表01 位图文件结构内容摘要
偏移量 |
域的名称 |
大小 |
内容 |
|||||||||
图象文件 头 |
0000h | 文件标识 | 2 bytes | 两字节的内容用来识别位图的类型: ‘BM’ : Windows 3.1x, 95, NT, … ‘BA’ :OS/2 Bitmap Array ‘CI’ :OS/2 Color Icon ‘CP’ :OS/2 Color Pointer ‘IC’ : OS/2 Icon ‘PT’ :OS/2 Pointer 注:因为OS/2系统并没有被普及开,所以在编程时,你只需判断第一个标识“BM”就行。 |
||||||||
0002h | File Size | 1 dword | 用字节表示的整个文件的大小 | |||||||||
0006h | Reserved | 1 dword | 保留,必须设置为0 | |||||||||
000Ah | Bitmap Data Offset | 1 dword | 从文件开始到位图数据开始之间的数据(bitmap data)之间的偏移量 | |||||||||
000Eh | Bitmap Header Size | 1 dword | 位图信息头(Bitmap Info Header)的长度,用来描述位图的颜色、压缩方法等。下面的长度表示: 28h - Windows 3.1x, 95, NT, … 0Ch - OS/2 1.x F0h - OS/2 2.x 注:在Windows95、98、2000等操作系统中,位图信息头的长度并不一定是28h,因为微软已经制定出了新的BMP文件格式,其中的信息头结构变化比较大,长度加长。所以最好不要直接使用常数28h,而是应该从具体的文件中读取这个值。这样才能确保程序的兼容性。 |
|||||||||
0012h | Width | 1 dword | 位图的宽度,以象素为单位 | |||||||||
0016h | Height | 1 dword | 位图的高度,以象素为单位 | |||||||||
001Ah | Planes | 1 word | 位图的位面数(注:该值将总是1) | |||||||||
图象 信息 头
|
001Ch | Bits Per Pixel | 1 word | 每个象素的位数 1 - 单色位图(实际上可有两种颜色,缺省情况下是黑色和白色。你可以自己定义这两种颜色) 4 - 16 色位图 8 - 256 色位图 16 - 16bit 高彩色位图 24 - 24bit 真彩色位图 32 - 32bit 增强型真彩色位图 |
||||||||
001Eh | Compression | 1 dword | 压缩说明: 0 - 不压缩 (使用BI_RGB表示) 1 - RLE 8-使用8位RLE压缩方式(用BI_RLE8表示) 2 - RLE 4-使用4位RLE压缩方式(用BI_RLE4表示) 3 - Bitfields-位域存放方式(用BI_BITFIELDS表示) |
|||||||||
0022h | Bitmap Data Size | 1 dword | 用字节数表示的位图数据的大小。该数必须是4的倍数 | |||||||||
0026h | HResolution | 1 dword | 用象素/米表示的水平分辨率 | |||||||||
002Ah | VResolution | 1 dword | 用象素/米表示的垂直分辨率 | |||||||||
002Eh | Colors | 1 dword | 位图使用的颜色数。如8-比特/象素表示为100h或者 256. | |||||||||
0032h | Important Colors | 1 dword | 指定重要的颜色数。当该域的值等于颜色数时(或者等于0时),表示所有颜色都一样重要 | |||||||||
调色板数据 | 根据BMP版本的不同而不同 | Palette | N * 4 byte | 调色板规范。对于调色板中的每个表项,这4个字节用下述方法来描述RGB的值:
|
||||||||
图象数据 | 根据BMP版本及调色板尺寸的不同而不同 | Bitmap Data | xxx bytes | 该域的大小取决于压缩方法及图像的尺寸和图像的位深度,它包含所有的位图数据字节,这些数据可能是彩色调色板的索引号,也可能是实际的RGB值,这将根据图像信息头中的位深度值来决定。 |
1. 位图文件头 位图文件头包含有关于文件类型、文件大小、存放位置等信息,在Windows 3.0以上版本的位图文件中用BITMAPFILEHEADER结构来定义: typedef struct tagBITMAPFILEHEADER { /* bmfh */ UINT bfType; } BITMAPFILEHEADER; 其中:
2. 位图信息头 位图信息用BITMAPINFO结构来定义,它由位图信息头(bitmap-information header)和彩色表(color table)组成,前者用BITMAPINFOHEADER结构定义,后者用RGBQUAD结构定义。BITMAPINFO结构具有如下形式: typedef struct tagBITMAPINFO { /* bmi */ BITMAPINFOHEADER bmiHeader; } BITMAPINFO; 其中:
BITMAPINFOHEADER结构包含有位图文件的大小、压缩类型和颜色格式,其结构定义为: typedef struct tagBITMAPINFOHEADER { /* bmih */ DWORD biSize; } BITMAPINFOHEADER; 其中:
现就BITMAPINFOHEADER结构作如下说明: (1) 彩色表的定位 应用程序可使用存储在biSize成员中的信息来查找在BITMAPINFO结构中的彩色表,如下所示: pColor = ((LPSTR) pBitmapInfo + (WORD) (pBitmapInfo->bmiHeader.biSize)) (2) biBitCount biBitCount=1 表示位图最多有两种颜色,缺省情况下是黑色和白色,你也可以自己定义这两种颜色。图像信息头装调色板中将有两个调色板项,称为索引0和索引1。图象数据阵列中的每一位表示一个象素。如果一个位是0,显示时就使用索引0的RGB值,如果位是1,则使用索引1的RGB值。 biBitCount=4 表示位图最多有16种颜色。每个象素用4位表示,并用这4位作为彩色表的表项来查找该象素的颜色。例如,如果位图中的第一个字节为0x1F,它表示有两个象素,第一象素的颜色就在彩色表的第2表项中查找,而第二个象素的颜色就在彩色表的第16表项中查找。此时,调色板中缺省情况下会有16个RGB项。对应于索引0到索引15。 biBitCount=8 表示位图最多有256种颜色。每个象素用8位表示,并用这8位作为彩色表的表项来查找该象素的颜色。例如,如果位图中的第一个字节为0x1F,这个象素的颜色就在彩色表的第32表项中查找。此时,缺省情况下,调色板中会有256个RGB项,对应于索引0到索引255。 biBitCount=16 表示位图最多有216种颜色。每个色素用16位(2个字节)表示。这种格式叫作高彩色,或叫增强型16位色,或64K色。它的情况比较复杂,当biCompression成员的值是BI_RGB时,它没有调色板。16位中,最低的5位表示蓝色分量,中间的5位表示绿色分量,高的5位表示红色分量,一共占用了15位,最高的一位保留,设为0。这种格式也被称作555 16位位图。如果biCompression成员的值是BI_BITFIELDS,那么情况就复杂了,首先是原来调色板的位置被三个DWORD变量占据,称为红、绿、蓝掩码。分别用于描述红、绿、蓝分量在16位中所占的位置。在Windows 95(或98)中,系统可接受两种格式的位域:555和565,在555格式下,红、绿、蓝的掩码分别是:0x7C00、0x03E0、0x001F,而在565格式下,它们则分别为:0xF800、0x07E0、0x001F。你在读取一个像素之后,可以分别用掩码“与”上像素值,从而提取出想要的颜色分量(当然还要再经过适当的左右移操作)。在NT系统中,则没有格式限制,只不过要求掩码之间不能有重叠。(注:这种格式的图像使用起来是比较麻烦的,不过因为它的显示效果接近于真彩,而图像数据又比真彩图像小的多,所以,它更多的被用于游戏软件)。 biBitCount=24 表示位图最多有224种颜色。这种位图没有调色板(bmiColors成员尺寸为0),在位数组中,每3个字节代表一个象素,分别对应于颜色R、G、B。 biBitCount=32 表示位图最多有232种颜色。这种位图的结构与16位位图结构非常类似,当biCompression成员的值是BI_RGB时,它也没有调色板,32位中有24位用于存放RGB值,顺序是:最高位—保留,红8位、绿8位、蓝8位。这种格式也被成为888 32位图。如果 biCompression成员的值是BI_BITFIELDS时,原来调色板的位置将被三个DWORD变量占据,成为红、绿、蓝掩码,分别用于描述红、绿、蓝分量在32位中所占的位置。在Windows 95(or 98)中,系统只接受888格式,也就是说三个掩码的值将只能是:0xFF0000、0xFF00、0xFF。而在NT系统中,你只要注意使掩码之间不产生重叠就行。(注:这种图像格式比较规整,因为它是DWORD对齐的,所以在内存中进行图像处理时可进行汇编级的代码优化(简单))。 (3) ClrUsed BITMAPINFOHEADER结构中的成员ClrUsed指定实际使用的颜色数目。如果ClrUsed设置成0,位图使用的颜色数目就等于biBitCount成员中的数目。请注意,如果ClrUsed的值不是可用颜色的最大值或不是0,则在编程时应该注意调色板尺寸的计算,比如在4位位图中,调色板的缺省尺寸应该是16*sizeof(RGBQUAD),但是,如果ClrUsed的值不是16或者不是0,那么调色板的尺寸就应该是ClrUsed*sizeof(RGBQUAD)。 (4) 图象数据压缩 ① BI_RLE8:每个象素为8比特的RLE压缩编码,可使用编码方式和绝对方式中的任何一种进行压缩,这两种方式可在同一幅图中的任何地方使用。 编码方式:由2个字节组成,第一个字节指定使用相同颜色的象素数目,第二个字节指定使用的颜色索引。此外,这个字节对中的第一个字节可设置为0,联合使用第二个字节的值表示:
绝对方式:第一个字节设置为0,而第二个字节设置为0x03~0xFF之间的一个值。在这种方式中,第二个字节表示跟在这个字节后面的字节数,每个字节包含单个象素的颜色索引。压缩数据格式需要字边界(word boundary)对齐。下面的例子是用16进制表示的8-位压缩图象数据: 03 04 05 06 00 03 45 56 67 00 02 78 00 02 05 01 02 78 00 00 09 1E 00 01
② BI_RLE4:每个象素为4比特的RLE压缩编码,同样也可使用编码方式和绝对方式中的任何一种进行压缩,这两种方式也可在同一幅图中的任何地方使用。这两种方式是: 编码方式:由2个字节组成,第一个字节指定象素数目,第二个字节包含两种颜色索引,一个在高4位,另一个在低4位。第一个象素使用高4位的颜色索引,第二个使用低4位的颜色索引,第3个使用高4位的颜色索引,依此类推。 绝对方式:这个字节对中的第一个字节设置为0,第二个字节包含有颜色索引数,其后续字节包含有颜色索引,颜色索引存放在该字节的高、低4位中,一个颜色索引对应一个象素。此外,BI_RLE4也同样联合使用第二个字节中的值表示:
下面的例子是用16进制数表示的4-位压缩图象数据: 03 04 05 06 00 06 45 56 67 00 04 78 00 02 05 01 04 78 00 00 09 1E 00 01 这些压缩数据可解释为 :
3. 彩色表 彩色表包含的元素与位图所具有的颜色数相同,象素的颜色用RGBQUAD结构来定义。对于24-位真彩色图象就不使用彩色表(同样也包括16位、和32位位图),因为位图中的RGB值就代表了每个象素难丈 2噬 碇械难丈 囱丈 闹匾 耘判颍 饪梢愿ㄖ 允厩 绦蛭 荒芟允咀愎欢嘌丈 南允旧璞赶允静噬 枷蟆 GBQUAD结构描述由R、G、B相对强度组成的颜色,定义如下: typedef struct tagRGBQUAD { /* rgbq */ BYTE rgbBlue; } RGBQUAD; 其中:
4. 位图数据 紧跟在彩色表之后的是图象数据字节阵列。图象的每一扫描行由表示图象象素的连续的字节组成,每一行的字节数取决于图象的颜色数目和用象素表示的图象宽度。扫描行是由底向上存储的,这就是说,阵列中的第一个字节表示位图左下角的象素,而最后一个字节表示位图右上角的象素。(只针对与倒向DIB,如果是正向DIB,则扫描行是由顶向下存储的),倒向DIB的原点在图像的左下角,而正向DIB的原点在图像的左上角。同时,每一扫描行的字节数必需是4的整倍数,也就是DWORD对齐的。如果你想确保图像的扫描行DWORD对齐,可使用下面的代码: |