代码随想录算法训练营第四十六天【动态规划part08】 | 139.单词拆分、背包总结

139.单词拆分

题目链接:

力扣(LeetCode)官网 - 全球极客挚爱的技术成长平台

求解思路:

单词是物品,字符串s是背包,单词能否组成字符串s,就是问物品能不能把背包装满。

动规五部曲

  1. 确定dp数组及其下标含义:字符串长度为i,dp[i] 表示可以字符串可以拆分为一个或多个在字典中出现的单词
  2. 确定递推公式:如果确定dp[j] 是true,且[j, i]这个区间的子串出现在字典里,那么dp[i]一定是true。所以递推公式是 if([j, i] 这个区间的子串出现在字典里 && dp[j]是true) 那么 dp[i] = true
  3. dp数组的初始化:dp[0] = true,递推的根基;其他下表都初始化为false
  4. 确定遍历顺序:本题强调顺序,因此是排列问题,所以先遍历背包,再遍历物品;因为是完全背包,所以正序遍历
  5. 举例推导dp:以输入: s = "leetcode", wordDict = ["leet", "code"]为例,dp状态如图

代码随想录算法训练营第四十六天【动态规划part08】 | 139.单词拆分、背包总结_第1张图片

代码:

class Solution {
public:
    bool wordBreak(string s, vector& wordDict) {
        unordered_set wordSet(wordDict.begin(), wordDict.end());
        vector dp(s.size()+1, false);
        dp[0] = true;
        for (int i = 1; i <= s.size(); i++){
            for (int j = 0; j < i; j++){
                string word = s.substr(j, i-j);
                if (wordSet.find(word) != wordSet.end() && dp[j]){
                    dp[i] = true;
                }
            }
        }
        return dp[s.size()];
    }
};

背包总结

背包递推公式

问能否能装满背包(或者最多装多少):dp[j] = max(dp[j], dp[j - nums[i]] + nums[i]); ,对应题目如下:

  • 动态规划:416.分割等和子集(opens new window)
  • 动态规划:1049.最后一块石头的重量 II(opens new window)

问装满背包有几种方法:dp[j] += dp[j - nums[i]] ,对应题目如下:

  • 动态规划:494.目标和(opens new window)
  • 动态规划:518. 零钱兑换 II(opens new window)
  • 动态规划:377.组合总和Ⅳ(opens new window)
  • 动态规划:70. 爬楼梯进阶版(完全背包)(opens new window)

问背包装满最大价值:dp[j] = max(dp[j], dp[j - weight[i]] + value[i]); ,对应题目如下:

  • 动态规划:474.一和零(opens new window)

问装满背包所有物品的最小个数:dp[j] = min(dp[j - coins[i]] + 1, dp[j]); ,对应题目如下:

  • 动态规划:322.零钱兑换(opens new window)
  • 动态规划:279.完全平方数

遍历顺序

01背包

二维dp数组01背包先遍历物品还是先遍历背包都是可以的,且第二层for循环是从小到大遍历。

一维dp数组01背包只能先遍历物品再遍历背包容量,且第二层for循环是从大到小遍历。

完全背包

纯完全背包的一维dp数组实现,先遍历物品还是先遍历背包都是可以的,且第二层for循环是从小到大遍历。

如果求组合数就是外层for循环遍历物品,内层for遍历背包

如果求排列数就是外层for遍历背包,内层for循环遍历物品

相关题目如下:

求组合数

  • 动态规划:518.零钱兑换II(opens new window)

求排列数

  • 动态规划:377. 组合总和 Ⅳ (opens new window)
  • 动态规划:70. 爬楼梯进阶版(完全背包)(opens new window)

如果求最小数,那么两层for循环的先后顺序就无所谓了,相关题目如下:

求最小数

  • 动态规划:322. 零钱兑换 (opens new window)
  • 动态规划:279.完全平方数(opens new window)

你可能感兴趣的:(算法训练,算法,动态规划)