人工智能-注意力机制之残差连接和层规范化

残差连接和层规范化

层规范化和批量规范化的目标相同,但层规范化是基于特征维度进行规范化。尽管批量规范化在计算机视觉中被广泛应用,但在自然语言处理任务中(输入通常是变长序列)批量规范化通常不如层规范化的效果好。

以下代码对比不同维度的层规范化和批量规范化的效果。

ln = nn.LayerNorm(2)
bn = nn.BatchNorm1d(2)
X = torch.tensor([[1, 2], [2, 3]], dtype=torch.float32)
# 在训练模式下计算X的均值和方差
print('layer norm:', ln(X), '\nbatch norm:', bn(X))
layer norm: tensor([[-1.0000,  1.0000],
        [-1.0000,  1.0000]], grad_fn=)
batch norm: tensor([[-1.0000, -1.0000],
        [ 1.0000,  1.0000]], grad_fn=)

现在可以使用残差连接和层规范化来实现AddNorm类。暂退法也被作为正则化方法使用。

#@save
class AddNorm(nn.Module):
    """残差连接后进行层规范化"""
    def __init__(self, normalized_shape, dropout, **kwargs):
        super(AddNorm, self).__init__(**kwargs)
        self.dropout = nn.Dropout(dropout)
        self.ln = nn.LayerNorm(normalized_shape)

    def forward(self, X, Y):
        return self.ln(self.dropout(Y) + X)

残差连接要求两个输入的形状相同,以便加法操作后输出张量的形状相同。 

add_norm = AddNorm([3, 4], 0.5)
add_norm.eval()
add_norm(torch.ones((2, 3, 4)), torch.ones((2, 3, 4))).shape

 torch.Size([2, 3, 4])

 

 

 

你可能感兴趣的:(代码笔记,深度学习)