标量由只有一个元素的张量表示
import torch
x = torch.tensor(3.0)
y = torch.tensor(2.0)
x + y, x * y, x / y, x ** y
(tensor(5.), tensor(6.), tensor(1.5000), tensor(9.))
向量可以视为标量值组成的列表,这些标量值被称为响亮的元素(element)或分量(component)。
通过一维张量表示向量。一般来说,张量可以具有任意长度,取决于机器的内存限制。
x = torch.arange(4)
x
tensor([0, 1, 2, 3])
可以使用下标来引用向量的任一元素,例如可以通过 x i x_i xi来引用第 i i i个元素
x[3]
tensor(3)
向量的长度通常称为向量的维度(dimension)
可以通过调用Python的len()函数来访问张量的长度
len(x)
4
矩阵在代码中表示为具有两个轴的张量
A = torch.arange(20).reshape(5, 4)
A
tensor([[ 0, 1, 2, 3],
[ 4, 5, 6, 7],
[ 8, 9, 10, 11],
[12, 13, 14, 15],
[16, 17, 18, 19]])
可以通过行索引( i i i)和列索引( j j j)来访问矩阵中的标量元素 a i j a_{ij} aij,例如 [ A ] i j [\mathbf{A}]_{ij} [A]ij。
当我们交换矩阵的行和列时,结果称为矩阵的转置(transpose)。
通常用 a ⊤ \mathbf{a}^\top a⊤来表示矩阵的转置,如果 B = A ⊤ \mathbf{B}=\mathbf{A}^\top B=A⊤,
则对于任意 i i i和 j j j,都有 b i j = a j i b_{ij}=a_{ji} bij=aji。
A.T
tensor([[ 0, 4, 8, 12, 16],
[ 1, 5, 9, 13, 17],
[ 2, 6, 10, 14, 18],
[ 3, 7, 11, 15, 19]])
[对称矩阵(symmetric matrix) A \mathbf{A} A等于其转置: A = A ⊤ \mathbf{A} = \mathbf{A}^\top A=A⊤]。
B = torch.tensor([[1, 2, 3], [2, 0, 4], [3, 4, 5]])
B
tensor([[1, 2, 3],
[2, 0, 4],
[3, 4, 5]])
B == B.T
tensor([[True, True, True],
[True, True, True],
[True, True, True]])
给定具有相同形状的任意两个张量,任何按元素二元运算的结果都将是相同形状的张量。
例如,将两个相同形状的矩阵相加,会在这两个矩阵上执行元素加法。
A = torch.arange(20, dtype=torch.float32).reshape(5, 4)
B = A.clone() # 通过分配新内存,将A的一个副本分配给B
A, A + B
(tensor([[ 0., 1., 2., 3.],
[ 4., 5., 6., 7.],
[ 8., 9., 10., 11.],
[12., 13., 14., 15.],
[16., 17., 18., 19.]]),
tensor([[ 0., 2., 4., 6.],
[ 8., 10., 12., 14.],
[16., 18., 20., 22.],
[24., 26., 28., 30.],
[32., 34., 36., 38.]]))
两个矩阵的按元素乘法称为Hadamard积(Hadamard product)(数学符号 ⊙ \odot ⊙)
A * B
tensor([[ 0., 1., 4., 9.],
[ 16., 25., 36., 49.],
[ 64., 81., 100., 121.],
[144., 169., 196., 225.],
[256., 289., 324., 361.]])
将张量乘以或加上一个标量不会改变张量的形状,其中张量的每个元素都将与标量相加或相乘。
a = 2
X = torch.arange(24).reshape(2, 3, 4)
a + X, (a * X).shape
(tensor([[[ 2, 3, 4, 5],
[ 6, 7, 8, 9],
[10, 11, 12, 13]],
[[14, 15, 16, 17],
[18, 19, 20, 21],
[22, 23, 24, 25]]]),
torch.Size([2, 3, 4]))
默认情况下,调用求和函数会沿所有的轴降低张量的维度,使它变成一个标量。
x = torch.arange(4, dtype=torch.float32)
x, x.sum()
(tensor([0., 1., 2., 3.]), tensor(6.))
A.shape, A.sum()
(torch.Size([5, 4]), tensor(190.))
可以指定张量沿着哪一个轴来通过求和降低维度。
例如,为了通过求和所有行的元素来降维(轴0),可以在调用函数时指定axis=0
由于输入矩阵沿轴0降维以生成输出向量,因此输入轴0的维数在输出形状中消失。
A_sum_axis0 = A.sum(axis=0)
A_sum_axis0, A_sum_axis0.shape
(tensor([40., 45., 50., 55.]), torch.Size([4]))
指定axis=1将通过汇总所有列的元素降维(轴1)。
因此,输入轴1的维数在输出形状中消失。
A_sum_axis1 = A.sum(axis=1)
A_sum_axis1, A_sum_axis1.shape
(tensor([ 6., 22., 38., 54., 70.]), torch.Size([5]))
沿着行和列对矩阵求和,等价于对矩阵的所有元素进行求和。
A.sum(axis = [0, 1]) # 结果和A.sum()相同
tensor(190.)
一个与求和相关的量是平均值(mean或average)。
我们通过将总和除以元素总数来计算平均值。
在代码中,我们可以调用函数来计算任意形状张量的平均值。
计算平均值的函数也可以沿指定轴降低张量的维度。
A.mean(), A.sum() / A.numel()
(tensor(9.5000), tensor(9.5000))
A.mean(axis=0), A.sum(axis=0) / A.shape[0]
(tensor([ 8., 9., 10., 11.]), tensor([ 8., 9., 10., 11.]))
sum_A = A.sum(axis=1, keepdims=True)
sum_A
tensor([[ 6.],
[22.],
[38.],
[54.],
[70.]])
由于sum_A在对每行进行求和后仍保持两个轴,我们可以通过广播将A除以sum_A。
A / sum_A
tensor([[0.0000, 0.1667, 0.3333, 0.5000],
[0.1818, 0.2273, 0.2727, 0.3182],
[0.2105, 0.2368, 0.2632, 0.2895],
[0.2222, 0.2407, 0.2593, 0.2778],
[0.2286, 0.2429, 0.2571, 0.2714]])
如果我们想沿某个轴计算A元素的累积总和,
如axis=0(按行计算),可以调用cumsum函数。
此函数不会沿任何轴降低输入张量的维度。
A.cumsum(axis=0)
tensor([[ 0., 1., 2., 3.],
[ 4., 6., 8., 10.],
[12., 15., 18., 21.],
[24., 28., 32., 36.],
[40., 45., 50., 55.]])
矩阵相同位置按元素乘积的和
y = torch.ones(4, dtype = torch.float32)
x, y, torch.dot(x, y)
(tensor([0., 1., 2., 3.]), tensor([1., 1., 1., 1.]), tensor(6.))
可以通过执行按元素乘法,然后进行求和来表示两个向量的点积:
torch.sum(x * y)
tensor(6.)
在代码中使用张量表示矩阵-向量积时,使用mv函数。当为矩阵A和向量x调用torch.mv(A, x)时,会执行矩阵-向量积。
注意,A的列维数(沿轴1的长度)必须与x的维数(其长度)相同。
A.shape, x.shape, torch.mv(A, x)
(torch.Size([5, 4]), torch.Size([4]), tensor([ 14., 38., 62., 86., 110.]))
B = torch.ones(4, 3)
torch.mm(A, B)
tensor([[ 6., 6., 6.],
[22., 22., 22.],
[38., 38., 38.],
[54., 54., 54.],
[70., 70., 70.]])
矩阵-矩阵乘法可以简单地称为矩阵乘法,不应与"Hadamard积"混淆。
在线性代数中,向量范数是将向量映射到标量的函数 f f f。
给定任意向量 x \mathbf{x} x,向量范数要满足一些属性。
第一个性质是:如果我们按常数因子 α \alpha α缩放向量的所有元素,
其范数也会按相同常数因子的绝对值缩放:
f ( α x ) = ∣ α ∣ f ( x ) . f(\alpha \mathbf{x}) = |\alpha| f(\mathbf{x}). f(αx)=∣α∣f(x).
第二个性质是三角不等式:
f ( x + y ) ≤ f ( x ) + f ( y ) . f(\mathbf{x} + \mathbf{y}) \leq f(\mathbf{x}) + f(\mathbf{y}). f(x+y)≤f(x)+f(y).
第三个性质是范数必须是非负的:
f ( x ) ≥ 0. f(\mathbf{x}) \geq 0. f(x)≥0.
最后一个性质要求范数最小为0,当且仅当向量全由0组成。
∀ i , [ x ] i = 0 ⇔ f ( x ) = 0. \forall i, [\mathbf{x}]_i = 0 \Leftrightarrow f(\mathbf{x})=0. ∀i,[x]i=0⇔f(x)=0.
欧几里得距离是一个 L 2 L_2 L2范数:
假设 n n n维向量 x \mathbf{x} x中的元素是 x 1 , … , x n x_1,\ldots,x_n x1,…,xn,其 L 2 L_2 L2范数是向量元素平方和的平方根:
∥ x ∥ 2 = ∑ i = 1 n x i 2 , \|\mathbf{x}\|_2 = \sqrt{\sum_{i=1}^n x_i^2}, ∥x∥2=i=1∑nxi2,
其中,在 L 2 L_2 L2范数中常常省略下标 2 2 2,也就是说 ∥ x ∥ \|\mathbf{x}\| ∥x∥等同于 ∥ x ∥ 2 \|\mathbf{x}\|_2 ∥x∥2。
在代码中,我们可以按如下方式计算向量的 L 2 L_2 L2范数。
u = torch.tensor([3.0, -4.0])
torch.norm(u)
tensor(5.)
L 1 L_1 L1范数表示为向量元素的绝对值之和:
∥ x ∥ 1 = ∑ i = 1 n ∣ x i ∣ . \|\mathbf{x}\|_1 = \sum_{i=1}^n \left|x_i \right|. ∥x∥1=i=1∑n∣xi∣.
与 L 2 L_2 L2范数相比, L 1 L_1 L1范数受异常值的影响较小。
为了计算 L 1 L_1 L1范数,我们将绝对值函数和按元素求和组合起来。
torch.abs(u).sum()
tensor(7.)
L 2 L_2 L2范数和 L 1 L_1 L1范数都是更一般的 L p L_p Lp范数的特例:
∥ x ∥ p = ( ∑ i = 1 n ∣ x i ∣ p ) 1 / p . \|\mathbf{x}\|_p = \left(\sum_{i=1}^n \left|x_i \right|^p \right)^{1/p}. ∥x∥p=(i=1∑n∣xi∣p)1/p.
类似于向量的 L 2 L_2 L2范数,矩阵 X ∈ R m × n \mathbf{X} \in \mathbb{R}^{m \times n} X∈Rm×n的Frobenius范数(Frobenius norm)是矩阵元素平方和的平方根:
( ∥ X ∥ F = ∑ i = 1 m ∑ j = 1 n x i j 2 . \|\mathbf{X}\|_F = \sqrt{\sum_{i=1}^m \sum_{j=1}^n x_{ij}^2}. ∥X∥F=i=1∑mj=1∑nxij2.)
Frobenius范数满足向量范数的所有性质,它就像是矩阵形向量的 L 2 L_2 L2范数。
调用以下函数将计算矩阵的Frobenius范数。
torch.norm(torch.ones((4, 9)))
tensor(6.)