- 【力扣Hot 100】链表1
SharkWeek.
leetcode链表算法
1.相交链表给你两个单链表的头节点headA和headB,请你找出并返回两个单链表相交的起始节点。如果两个链表不存在相交节点,返回null。图示两个链表在节点c1开始相交**:**!https://assets.leetcode-cn.com/aliyun-lc-upload/uploads/2018/12/14/160_statement.png题目数据保证整个链式结构中不存在环。注意,函数返回
- 使用YOLOv8训练一个无人机(UAV)检测模型,深度学习目标检测中_并开发一个完整的系统 yolov8来训练无人机数据集并检测无人机
QQ_767172261
无人及视角YOLO无人机深度学习
使用YOLOv8训练一个无人机(UAV)检测模型,深度学习目标检测中_并开发一个完整的系统yolov8来训练无人机数据集并检测无人机无人机数据集,yolo格式种类为uav,一共近5w张图片,如何用yolov8代码训练无人机检测数据集文章目录以下文章及内容仅供参考。1.环境部署2.数据预处理数据集准备划分数据集3.模型定义4.训练模型5.评估模型6.结果分析与可视化7.集成与部署PyQt6GUI(`
- 程序代码篇---python回调函数&异步编程
Ronin-Lotus
程序代码篇python前端开发语言学习程序人生回调函数异步编程
文章目录前言第一部分:Python的回调函数1.基本概念2.如何实现定义回调函数:定义主函数:例子3.回调函数的应用场景事件处理异步编程库和框架注意事项调用时机错误处理闭包第二部分:async和await关键字1.异步编程的概念2.async定义用法特性3.await定义用法特性4.异步编程的例子5.注意事项总结前言以上就是今天要讲的内容,本文简单介绍了Python中的回调函数以及异步编程。第一部
- 微信小程序获取用户位置
李十岁a
微信小程序小程序
文章目录概要整体流程小结概要使用uniapp实现微信小程序获取用户位置信息整体流程例如:1.首先进入微信公众平台-开发-开发管理-接口设置-点击开通-wx.getLocation(注意:申请接口时填写详细说明,上传图片,可查看示例进行填写,不然可能需要申请好几遍亲测)2.在uniapp-page.json中小程序配置"mp-weixin"里添加以下内容或者在manifest.json配置文件中勾选
- Golang 进阶4—— 网络编程
小吴同学(wlx)
golang
Golang进阶4——网络编程注意,该文档只适合有编程基础的同学,这里的go教程只给出有区别的知识点网络编程:把分布在不同地理区域的计算机与专门的外部设备用通信线路互连成一个规模大,功能强的网络系统,从而使众多的计算机可以方便的相互通信、共享硬件、软件等资源1.1客户端//客户端import("fmt""net"//所有网络编程都在这个包下)funcmain(){//打印fmt.Println("
- GFPGAN - 腾讯开源的图形修复算法修复算法
小众AI
AI开源开源算法人工智能
GFPGAN是腾讯开源的人脸修复算法,它利用预先训练好的面部修复算法,并且封装了各种丰富多样的先验因素进行盲脸(blindface)修复,可以对老照片进行很好的修复。35800Stars5900Forks345Issues11贡献者ApacheLicensePython语言代码:https://github.com/TencentARC/GFPGAN更多AI开源软件:AI开源-小众AI主要功能盲修
- Guns框架基本介绍、下载、部署
liban121
Guns
什么是Guns?1、快速构建后台管理系统的框架(注意:是后台管理系统)2、Guns默认提供诸多业务系统的基本功能3、Guns集成诸多优秀的开源框架基本功能权限管理(用户管理,角色管理,部门管理)菜单管理,字典管理,业务日志,登录日志,监控管理,通知管理,代码生成(核心)Guns的部署第一步:下载Guns:https://gitee.com/stylefeng/guns版本选择:第二步:导入IDEA
- Python知识点:基于Python技术,如何使用AirSim进行无人机模拟
超哥同学
Python系列python无人机开发语言面试编程
开篇,先说一个好消息,截止到2025年1月1日前,翻到文末找到我,赠送定制版的开题报告和任务书,先到先得!过期不候!如何使用Python和AirSim进行无人机模拟无人机技术的发展为许多行业带来了革命性的变化,尤其是在航拍、物流配送和农业监测等领域。然而,无人机的操作和开发需要一个安全且可控的环境来进行测试和训练。AirSim就是这样一个模拟器,它提供了一个基于UnrealEngine的逼真环境,
- 【树莓派入门系列】opencv安装
^Mark_Zhang^
pythonopencv人工智能
树莓派入门之Opencv库安装提示:本文树莓派4B所搭载的系统是Raspi11本教程不需要任何换源,直接用树莓派自带的源就行文章目录一、树莓派版本查看二、Opencv库安装1.扩大系统文件(常规操作)2.安装aptitude软件包3.CMake工具安装4.基础库安装5.opencv-python库5.注意点一、树莓派版本查看代码如下:uanme-a或lsb_release-a二、Opencv库安装
- 图像分类与识别的自组织特征映射网络实践
无声远望
本文还有配套的精品资源,点击获取简介:自组织特征映射网络(SOFM)是一种无监督学习模型,适用于图像处理中的预处理、特征提取和分类识别。通过在MATLAB中实现SOFM,可以进行数据预处理、特征提取、网络训练、分类与识别以及优化评估。本内容涵盖了SOFM网络的应用步骤、训练过程、参数调整和性能评估,旨在提供图像处理问题的解决方案。1.自组织特征映射网络简介1.1自组织特征映射网络概述自组织特征映射
- 2.2.3 代码格式与风格指南
阿凡工控分享
ST编程指南PLC开发语言PLC
编写清晰、规范的代码是提高代码可读性、可维护性和团队协作效率的关键。虽然好多人说工控行业都是一帮电工,没有什么素质,这完全是误解,任何程序所在的行业,都需要个人保证其代码风格能够很好与团队进行协作,在过去一台设备一个人写的多,往往不注意这些,这也导致了设备交接困难,成了后来接手工程师永远的痛,但是时代在发展,如今多人协作使得代码的规范性越来越成为如今的工控开发行业的共识。以下是ST(Structu
- C/C++教程 第十四章 —— MFC控件详解
余识-
C/C++实战入门到精通mfcc++c语言
注意本系列文章已升级、转移至我的自建站点中,本章原文为:MFC控件详解目录注意一、前言二、项目建立三、Comboxbox四、ListBox五、GroupBox六、Picturecontrol七、ScrollBar八、SpinControl九、ProgressControl十、hotkey十一、ListControl十二、TreeControl十三、TabControl一、前言通过前面两章的学习,现
- 基于MySQL8.0安装部署MHA集群(一主两从)
收买神的欢心
mysql数据库大数据
写在前面之前搭建过MySQL5.7版本的MHA集群,因为一些需要,现进行MySQL8.0版本的MHA集群搭建,搭建步骤基本与5.7版本相似,所以某些测试部分、问题解决、安装包、mha的IP漂移配置文件可以参照我之前写的博文,但是有部分配置文件做了改动,且8.0版本的某些命令与5.7版本的也不尽相同,需要注意。基于MySQL5.7安装部署MHA集群(一主一从)可查看MySQL高可用集群搭建(一主一从
- 基于Python的自然语言处理系列(2):Word2Vec(负采样)
会飞的Anthony
自然语言处理人工智能信息系统自然语言处理word2vec人工智能
在本系列的第二篇文章中,我们将继续探讨Word2Vec模型,这次重点介绍负采样(NegativeSampling)技术。负采样是一种优化Skip-gram模型训练效率的技术,它能在大规模语料库中显著减少计算复杂度。接下来,我们将通过详细的代码实现和理论讲解,帮助你理解负采样的工作原理及其在Word2Vec中的应用。1.Word2Vec(负采样)原理1.1负采样的背景在Word2Vec的Skip-g
- 大模型GUI系列论文阅读 DAY4:《PREDICT: Multi-Agent-based Debate Simulation for Generalized Hate Speech Detecti》
feifeikon
论文阅读
摘要虽然已经提出了一些公共基准用于训练仇恨言论检测模型,但这些基准之间的标注标准差异为模型的泛化学习带来了挑战,限制了其适用性。先前的研究提出了通过数据整合或扩充来泛化模型的方法,但在克服数据集之间的标注标准差异方面仍然存在局限性。为了解决这些挑战,我们提出了PREDICT,一种基于多代理(multi-agent)概念的仇恨言论检测新框架。PREDICT包括两个阶段:(1)PRE(基于视角的推理)
- 2025-1-21-sklearn学习(43) 使用 scikit-learn 介绍机器学习 楼上阑干横斗柄,寒露人远鸡相应。
汤姆和佩琦
sklearn机器学习sklearn学习python人工智能scikit-learn
文章目录sklearn学习(43)使用scikit-learn介绍机器学习43.1机器学习:问题设置43.2加载示例数据集43.3学习和预测43.4模型持久化43.4规定43.4.1类型转换43.4.2再次训练和更新参数43.4.3多分类与多标签拟合sklearn学习(43)使用scikit-learn介绍机器学习文章参考网站:https://sklearn.apachecn.org/和https
- GPT-4、GPT-4O 和 GPT-4O-mini 的区别与联系
surfirst
LLMai语言模型chatgpt
简介近年来,人工智能技术飞速发展,特别是在自然语言处理领域。GPT-4是OpenAI推出的新一代大模型,而GPT-4O和GPT-4O-mini是其优化版本,专门为不同应用场景和计算资源需求进行调整。在这篇文章中,我们将详细比较GPT-4、GPT-4O和GPT-4O-mini的区别与联系,帮助开发者更好地选择适合的模型。GPT-4是OpenAI发布的第四代通用预训练模型,具备强大的生成和理解能力,适
- 第72期 | GPTSecurity周报
云起无垠
GPTSecurity人工智能安全
GPTSecurity是一个涵盖了前沿学术研究和实践经验分享的社区,集成了生成预训练Transformer(GPT)、人工智能生成内容(AIGC)以及大语言模型(LLM)等安全领域应用的知识。在这里,您可以找到关于GPT/AIGC/LLM最新的研究论文、博客文章、实用的工具和预设指令(Prompts)。现为了更好地知悉近一周的贡献内容,现总结如下。SecurityPapers1.从孤立指令到互动鼓
- PointNet++改进策略 :模块改进 | OA-CNNs | , 全自适应3D稀疏卷积神经网络(OA-CNNs),超越基于Transformer的模型,同时显著降低计算和内存成本
我是瓦力
PointNet++改进策略3dtransformer深度学习计算机视觉人工智能神经网络
目录介绍核心思想及其实现引入空间自适应感受野自适应关系卷积(ARConv)网络整体架构设计训练和验证实验与评估如何改进PointNet++引入空间自适应感受野引入自适应关系学习利用自适应聚合器论文题目:OA-CNNs:Omni-AdaptiveSparseCNNsfor3DSemanticSegmentation发布期刊:CVPR2024作者地址:1香港中文大学2香港大学3香港中文大学,深圳4HI
- PointNet++改进策略 :模块改进 | PointCAT, 使用交叉注意力机制来提升3D点云任务中提升模型精度
我是瓦力
PointNet++改进策略3d深度学习人工智能计算机视觉transformer
论文题目:PointCAT:Cross-AttentionTransformerforPointCloud通讯地址:南京理工大学代码地址:https://github.com/xincheng-yang/PointCAT.PointCAT架构:PointCAT提出了一种基于交叉注意力机制的Transformer网络,专门用于点云表示。它通过两个不同的多尺度特征分支,利用交叉注意力机制来交换信息。通
- PyTorch 实战教程:从模型搭建到训练的每一步
AI_小站
pytorch人工智能pythontransformer深度学习大模型LLM
用深度学习搞事情,模型搭建和训练是绕不开的两步。而PyTorch,作为一个“又灵活又好用”的深度学习框架,简直就是写代码的快乐源泉。今天我们就从0到1,实战PyTorch的模型搭建和训练流程。说白了,看完你就能自己搭个神经网络,喂点数据进去,再让它干点活。安装PyTorch要用PyTorch,得先装上它。PyTorch的安装稍微有点讲究,主要是要根据你的硬件选择CPU版本还是GPU版本。基本安装命
- PyQt6医疗多模态大语言模型(MLLM)实用系统框架构建初探(下.代码部分)
Allen_LVyingbo
医疗高效编程研发python健康医疗pythonpyqt语言模型人工智能
医疗MLLM框架编程实现本医疗MLLM框架结合Python与PyQt6构建,旨在实现多模态医疗数据融合分析并提供可视化界面。下面从数据预处理、模型构建与训练、可视化界面开发、模型-界面通信与部署这几个关键部分详细介绍编程实现。6.1数据预处理在医疗MLLM框架中,多模态数据的预处理是非常关键的一步,它直接影响到后续模型的训练效果和性能。我们需要对医学影像、文本数据和音频数据分别进行预处理,以确保数
- 计算机视觉:卷积核
每天五分钟玩转人工智能
计算机视觉计算机视觉深度学习人工智能机器学习卷积神经网络
本文重点卷积神经网络(ConvolutionalNeuralNetwork,CNN)是一种深度学习模型,广泛应用于图像识别、自然语言处理、语音识别等领域。在卷积神经网络中,卷积核是网络的核心组件之一。通过不断堆叠卷积层和池化层,可以逐渐提取出更高级别的特征,从而实现更复杂的任务。卷积神经网络中的卷积核可以通过反向传播算法进行训练和优化,使其能够自适应地学习输入数据中的特征。因此,卷积神经网络在图像
- 【深度学习】常见模型-生成对抗网络(Generative Adversarial Network, GAN)
IT古董
人工智能深度学习机器学习深度学习生成对抗网络人工智能
生成对抗网络(GenerativeAdversarialNetwork,GAN)是一种深度学习模型框架,由IanGoodfellow等人在2014年提出。GAN由生成器(Generator)和判别器(Discriminator)两个对抗网络组成,通过彼此博弈的方式训练,从而生成与真实数据分布极为相似的高质量数据。GAN在图像生成、文本生成、数据增强等领域中有广泛应用。核心思想GAN的核心是两个神经
- InceptionV1实现猴痘病识别案例
小叮当爱咖啡
计算机视觉人工智能神经网络深度学习
本文为为365天深度学习训练营内部文章原作者:K同学啊InceptionModule是InceptionV1的核心组成单元,提出了卷积层的并行结构,实现了在同一层就可以提取不同的特征为了改善计算量大的问题,使用了1*1的卷积核实现降维操作,以此来减小网络的参数量与计算量1*1卷积核的作用:降低输入特征图的通道数,减小网络的参数量与计算量最后InceptionModule基本由1*1卷积,3*3卷积
- 打开pycharm 报错:if you already have a 32-bit JDK installed,define a JAVE_HOME variable in
七分seven
pycharmidepython
打开pycharm报错:ifyoualreadyhavea32-bitJDKinstalled,defineaJAVE_HOMEvariablein.......解决方案:1.检查当前的pycharm执行文件可能是32位的,而当前电脑的系统确实64位的。所以只需要找到或重新下载64位的pycharm执行文件即可解决。2.如果电脑是32位的系统,也需要注意jdk需要配置32位的环境变量。jdk的环境
- NVIDIA L40s、A10、A40、A100、A6000横评,哪个GPU 更适合 AI 推理任务?
DO_Community
技术科普商业建议人工智能gpu算力DigitalOceanaiAIGC
近年来,随着人工智能技术的发展,特别是深度学习模型的广泛应用,GPU(图形处理单元)作为加速计算的重要硬件,在AI领域扮演着越来越重要的角色。AI推理是指已经训练好的模型对新数据进行预测的过程。与训练阶段相比,推理通常对GPU的要求有所不同,更注重于能效比、延迟以及并发处理能力。本文将从这些角度出发,对比分析NVIDIA的L40s、A10、A40、A100、A6000五款GPU在AI推理任务中的表
- [预训练语言模型专题] 百度出品ERNIE合集,问国产预训练语言模型哪家强
yang191919
朴素人工智能百度编程语言机器学习人工智能深度学习
本文为预训练语言模型专题系列第七篇系列传送门[萌芽时代]、[风起云涌]、[文本分类通用技巧]、[GPT家族]、[BERT来临]、[BE
- 利用Kubespray安装生产环境的k8s集群-排错篇
超级阿飞
k8sclusterkubernetesdocker容器
利用Kubespray安装生产环境的k8s集群-排错Ansible排错Ansible安装后需要加入到PATH,以便能够直接运行。一般用非root用户运行,注意在playbook或者inventory里要显性定义become属性。最好采用ansible运行账号可以免密码sudo的模式。Ansible的配置文件,在kuberspray安装时已经存在,需要将Ansible运行配置文件指向相应位置。配置文
- YOLOV11改进1-检测头篇
~啥也不会~
YOLO人工智能目标检测神经网络深度学习
文章目录前言一、YAML修改二、模型训练1.数据集准备2.环境准备3.训练3.1原结构训练3.2更改后的模型三.效果对比1.原始结构2.修改后的结果3.详细对比总结前言 目标检测领域里,小目标一直是一个难点问题,虽然我们可以用YOLO+SAHI的方式进行滑动窗口推理以提升准确率,但是他的耗时会线性增强,毕竟一张大图会被切成很多小图去推理,所以在很多场景下无法得到应用。这里,我们从探测头入手,
- JVM StackMapTable 属性的作用及理解
lijingyao8206
jvm字节码Class文件StackMapTable
在Java 6版本之后JVM引入了栈图(Stack Map Table)概念。为了提高验证过程的效率,在字节码规范中添加了Stack Map Table属性,以下简称栈图,其方法的code属性中存储了局部变量和操作数的类型验证以及字节码的偏移量。也就是一个method需要且仅对应一个Stack Map Table。在Java 7版
- 回调函数调用方法
百合不是茶
java
最近在看大神写的代码时,.发现其中使用了很多的回调 ,以前只是在学习的时候经常用到 ,现在写个笔记 记录一下
代码很简单:
MainDemo :调用方法 得到方法的返回结果
- [时间机器]制造时间机器需要一些材料
comsci
制造
根据我的计算和推测,要完全实现制造一台时间机器,需要某些我们这个世界不存在的物质
和材料...
甚至可以这样说,这种材料和物质,我们在反应堆中也无法获得......
 
- 开口埋怨不如闭口做事
邓集海
邓集海 做人 做事 工作
“开口埋怨,不如闭口做事。”不是名人名言,而是一个普通父亲对儿子的训导。但是,因为这句训导,这位普通父亲却造就了一个名人儿子。这位普通父亲造就的名人儿子,叫张明正。 张明正出身贫寒,读书时成绩差,常挨老师批评。高中毕业,张明正连普通大学的分数线都没上。高考成绩出来后,平时开口怨这怨那的张明正,不从自身找原因,而是不停地埋怨自己家庭条件不好、埋怨父母没有给他创造良好的学习环境。
- jQuery插件开发全解析,类级别与对象级别开发
IT独行者
jquery开发插件 函数
jQuery插件的开发包括两种: 一种是类级别的插件开发,即给
jQuery添加新的全局函数,相当于给
jQuery类本身添加方法。
jQuery的全局函数就是属于
jQuery命名空间的函数,另一种是对象级别的插件开发,即给
jQuery对象添加方法。下面就两种函数的开发做详细的说明。
1
、类级别的插件开发 类级别的插件开发最直接的理解就是给jQuer
- Rome解析Rss
413277409
Rome解析Rss
import java.net.URL;
import java.util.List;
import org.junit.Test;
import com.sun.syndication.feed.synd.SyndCategory;
import com.sun.syndication.feed.synd.S
- RSA加密解密
无量
加密解密rsa
RSA加密解密代码
代码有待整理
package com.tongbanjie.commons.util;
import java.security.Key;
import java.security.KeyFactory;
import java.security.KeyPair;
import java.security.KeyPairGenerat
- linux 软件安装遇到的问题
aichenglong
linux遇到的问题ftp
1 ftp配置中遇到的问题
500 OOPS: cannot change directory
出现该问题的原因:是SELinux安装机制的问题.只要disable SELinux就可以了
修改方法:1 修改/etc/selinux/config 中SELINUX=disabled
2 source /etc
- 面试心得
alafqq
面试
最近面试了好几家公司。记录下;
支付宝,面试我的人胖胖的,看着人挺好的;博彦外包的职位,面试失败;
阿里金融,面试官人也挺和善,只不过我让他吐血了。。。
由于印象比较深,记录下;
1,自我介绍
2,说下八种基本类型;(算上string。楼主才答了3种,哈哈,string其实不是基本类型,是引用类型)
3,什么是包装类,包装类的优点;
4,平时看过什么书?NND,什么书都没看过。。照样
- java的多态性探讨
百合不是茶
java
java的多态性是指main方法在调用属性的时候类可以对这一属性做出反应的情况
//package 1;
class A{
public void test(){
System.out.println("A");
}
}
class D extends A{
public void test(){
S
- 网络编程基础篇之JavaScript-学习笔记
bijian1013
JavaScript
1.documentWrite
<html>
<head>
<script language="JavaScript">
document.write("这是电脑网络学校");
document.close();
</script>
</h
- 探索JUnit4扩展:深入Rule
bijian1013
JUnitRule单元测试
本文将进一步探究Rule的应用,展示如何使用Rule来替代@BeforeClass,@AfterClass,@Before和@After的功能。
在上一篇中提到,可以使用Rule替代现有的大部分Runner扩展,而且也不提倡对Runner中的withBefores(),withAfte
- [CSS]CSS浮动十五条规则
bit1129
css
这些浮动规则,主要是参考CSS权威指南关于浮动规则的总结,然后添加一些简单的例子以验证和理解这些规则。
1. 所有的页面元素都可以浮动 2. 一个元素浮动后,会成为块级元素,比如<span>,a, strong等都会变成块级元素 3.一个元素左浮动,会向最近的块级父元素的左上角移动,直到浮动元素的左外边界碰到块级父元素的左内边界;如果这个块级父元素已经有浮动元素停靠了
- 【Kafka六】Kafka Producer和Consumer多Broker、多Partition场景
bit1129
partition
0.Kafka服务器配置
3个broker
1个topic,6个partition,副本因子是2
2个consumer,每个consumer三个线程并发读取
1. Producer
package kafka.examples.multibrokers.producers;
import java.util.Properties;
import java.util.
- zabbix_agentd.conf配置文件详解
ronin47
zabbix 配置文件
Aliaskey的别名,例如 Alias=ttlsa.userid:vfs.file.regexp[/etc/passwd,^ttlsa:.:([0-9]+),,,,\1], 或者ttlsa的用户ID。你可以使用key:vfs.file.regexp[/etc/passwd,^ttlsa:.: ([0-9]+),,,,\1],也可以使用ttlsa.userid。备注: 别名不能重复,但是可以有多个
- java--19.用矩阵求Fibonacci数列的第N项
bylijinnan
fibonacci
参考了网上的思路,写了个Java版的:
public class Fibonacci {
final static int[] A={1,1,1,0};
public static void main(String[] args) {
int n=7;
for(int i=0;i<=n;i++){
int f=fibonac
- Netty源码学习-LengthFieldBasedFrameDecoder
bylijinnan
javanetty
先看看LengthFieldBasedFrameDecoder的官方API
http://docs.jboss.org/netty/3.1/api/org/jboss/netty/handler/codec/frame/LengthFieldBasedFrameDecoder.html
API举例说明了LengthFieldBasedFrameDecoder的解析机制,如下:
实
- AES加密解密
chicony
加密解密
AES加解密算法,使用Base64做转码以及辅助加密:
package com.wintv.common;
import javax.crypto.Cipher;
import javax.crypto.spec.IvParameterSpec;
import javax.crypto.spec.SecretKeySpec;
import sun.misc.BASE64Decod
- 文件编码格式转换
ctrain
编码格式
package com.test;
import java.io.File;
import java.io.FileInputStream;
import java.io.FileOutputStream;
import java.io.IOException;
import java.io.InputStream;
import java.io.OutputStream;
- mysql 在linux客户端插入数据中文乱码
daizj
mysql中文乱码
1、查看系统客户端,数据库,连接层的编码
查看方法: http://daizj.iteye.com/blog/2174993
进入mysql,通过如下命令查看数据库编码方式: mysql> show variables like 'character_set_%'; +--------------------------+------
- 好代码是廉价的代码
dcj3sjt126com
程序员读书
长久以来我一直主张:好代码是廉价的代码。
当我跟做开发的同事说出这话时,他们的第一反应是一种惊愕,然后是将近一个星期的嘲笑,把它当作一个笑话来讲。 当他们走近看我的表情、知道我是认真的时,才收敛一点。
当最初的惊愕消退后,他们会用一些这样的话来反驳: “好代码不廉价,好代码是采用经过数十年计算机科学研究和积累得出的最佳实践设计模式和方法论建立起来的精心制作的程序代码。”
我只
- Android网络请求库——android-async-http
dcj3sjt126com
android
在iOS开发中有大名鼎鼎的ASIHttpRequest库,用来处理网络请求操作,今天要介绍的是一个在Android上同样强大的网络请求库android-async-http,目前非常火的应用Instagram和Pinterest的Android版就是用的这个网络请求库。这个网络请求库是基于Apache HttpClient库之上的一个异步网络请求处理库,网络处理均基于Android的非UI线程,通
- ORACLE 复习笔记之SQL语句的优化
eksliang
SQL优化Oracle sql语句优化SQL语句的优化
转载请出自出处:http://eksliang.iteye.com/blog/2097999
SQL语句的优化总结如下
sql语句的优化可以按照如下六个步骤进行:
合理使用索引
避免或者简化排序
消除对大表的扫描
避免复杂的通配符匹配
调整子查询的性能
EXISTS和IN运算符
下面我就按照上面这六个步骤分别进行总结:
- 浅析:Android 嵌套滑动机制(NestedScrolling)
gg163
android移动开发滑动机制嵌套
谷歌在发布安卓 Lollipop版本之后,为了更好的用户体验,Google为Android的滑动机制提供了NestedScrolling特性
NestedScrolling的特性可以体现在哪里呢?<!--[if !supportLineBreakNewLine]--><!--[endif]-->
比如你使用了Toolbar,下面一个ScrollView,向上滚
- 使用hovertree菜单作为后台导航
hvt
JavaScriptjquery.nethovertreeasp.net
hovertree是一个jquery菜单插件,官方网址:http://keleyi.com/jq/hovertree/ ,可以登录该网址体验效果。
0.1.3版本:http://keleyi.com/jq/hovertree/demo/demo.0.1.3.htm
hovertree插件包含文件:
http://keleyi.com/jq/hovertree/css
- SVG 教程 (二)矩形
天梯梦
svg
SVG <rect> SVG Shapes
SVG有一些预定义的形状元素,可被开发者使用和操作:
矩形 <rect>
圆形 <circle>
椭圆 <ellipse>
线 <line>
折线 <polyline>
多边形 <polygon>
路径 <path>
- 一个简单的队列
luyulong
java数据结构队列
public class MyQueue {
private long[] arr;
private int front;
private int end;
// 有效数据的大小
private int elements;
public MyQueue() {
arr = new long[10];
elements = 0;
front
- 基础数据结构和算法九:Binary Search Tree
sunwinner
Algorithm
A binary search tree (BST) is a binary tree where each node has a Comparable key (and an associated value) and satisfies the restriction that the key in any node is larger than the keys in all
- 项目出现的一些问题和体会
Steven-Walker
DAOWebservlet
第一篇博客不知道要写点什么,就先来点近阶段的感悟吧。
这几天学了servlet和数据库等知识,就参照老方的视频写了一个简单的增删改查的,完成了最简单的一些功能,使用了三层架构。
dao层完成的是对数据库具体的功能实现,service层调用了dao层的实现方法,具体对servlet提供支持。
&
- 高手问答:Java老A带你全面提升Java单兵作战能力!
ITeye管理员
java
本期特邀《Java特种兵》作者:谢宇,CSDN论坛ID: xieyuooo 针对JAVA问题给予大家解答,欢迎网友积极提问,与专家一起讨论!
作者简介:
淘宝网资深Java工程师,CSDN超人气博主,人称“胖哥”。
CSDN博客地址:
http://blog.csdn.net/xieyuooo
作者在进入大学前是一个不折不扣的计算机白痴,曾经被人笑话过不懂鼠标是什么,