- BERT 和 Milvus 构建智能问答系统的全面技术解析,涵盖从原理到实践的完整流程
结合BERT和Milvus构建智能问答系统的全面技术解析,涵盖从原理到实践的完整流程。下面Python代码示例和优化策略:一、技术栈协作原理BERT的语义编码能力BERT作为预训练语言模型,通过双向Transformer结构将文本转换为高维向量(如768维),捕捉上下文语义信息。例如,句子"Milvus是向量数据库"会被编码为类似[0.2,-1.3,0.5,...]的向量19。Milvus的向量检
- AI教父Hinton与马斯克的“电锯”之战:科学界的喜剧与悲剧 [特殊字符]
东方佑
量子变法人工智能
亲爱的读者们,今天咱们来聊聊一场正在科技界上演的大戏——AI教父GeoffreyHinton和特斯拉CEO埃隆·马斯克之间的激烈交锋。这场争论不仅关乎个人荣誉,更是对美国乃至全球科研环境的一次重大考验。让我们一起看看这背后的故事吧!开场秀:Hintonvs马斯克首先登场的是我们的主角之一,被誉为“AI教父”的GeoffreyHinton。他在社交媒体上公开表示:“马斯克应该被英国皇家学会除名,因为
- Transformer架构深度研究报告(二、分层原理)
jiaojieran
transformer深度学习人工智能
一、Transformer不同层作用剖析1.1低层作用在Transformer架构中,低层(1-3层)主要承担着局部语法建模的关键任务,其对语言基础结构的理解和处理为后续高层语义分析奠定了坚实基础。在词性标注(POStagging)任务中,低层通过对相邻词之间关系的细致捕捉,能够精准判断每个词的词性。例如在句子“Thedogrunsfast”中,对于“runs”这个词,低层模型会关注其与相邻词“d
- 百度搜索语法
羊羊一洋
百度
百度搜索作为中国最大的搜索引擎,其搜索语法与谷歌搜索类似,但也有一些特有的功能。以下是一些基本的百度搜索语法:1.双引号(`""`):用来搜索精确的短语或句子。例如,搜索`"人工智能"`会找到包含完整短语"人工智能"的结果。2.减号(-):用来排除搜索结果中的特定词汇。例如,搜索`手机-iphone`会找到包含"手机"但不包含"iphone"的结果。3.加号(+):用来确保搜索结果中包含特定的词汇
- 系统调用read和write的疑问
唯瑞主义
疑问篇linux
问题背景:现在我有一个中文文档,里面是一些中文的句子,然后我有一个charbuffer[1]的缓冲区,我通过read中文文档,然后把数据写入到标准输出中,此时终端却正常打印,而不是显示乱码。代码展示:#include"unistd.h"#include#include"stdio.h"#include"stdlib.h"intmain(){//打开intfd=open("test.txt",O_R
- 用Meta的开源工具打造AI驱动的应用:LASER、Faiss与聊天加载器示例
dgay_hua
人工智能faisspython
MetaPlatforms(原Facebook)在AI技术领域持续创新,推出了多个优秀的开源工具,比如用于多语言句子嵌入的LASER、用于高效相似性搜索的Faiss,以及用于加载和处理Messenger和WhatsApp聊天记录的工具。这些工具可以帮助开发者快速构建AI驱动的应用。在本文中,我们将深入介绍这些工具的功能,并通过可运行的代码示例展示如何将它们应用到实际项目中。技术背景介绍LASER(
- 笔记:大模型Tokens是啥?为啥大模型按Tokens收费?
瞬间动力
硅基蒸馏easyui前端javascript人工智能tooneapi阿里云
一、Token的定义与示例1.核心概念Token是自然语言处理中的最小文本单位,代表模型处理文本时的一次计算单元。英文场景:1个token≈1个单词或标点符号。示例:句子"Hello,world!"拆分为["Hello",",","world","!"],共4个token。中文场景:1个token≈1个汉字或词语。示例:短语"深度求索"拆分为["深","度","求","索"],共4个token;若
- Empowering LLMs with Logical Reasoning: 从“语言大师”到“逻辑大师”的进化之路
步子哥
人工智能
“逻辑是智慧的骨架,而语言是智慧的血肉。让大语言模型(LLMs)既能说会道,又能逻辑严谨,是AI发展的下一座高峰。”开篇:语言模型的“逻辑盲区”近年来,大语言模型(LLMs)在自然语言处理(NLP)任务中取得了令人瞩目的成就。从生成流畅的文章到翻译复杂的句子,这些模型似乎无所不能。然而,当我们试图让它们回答逻辑推理问题时,却发现它们的表现常常令人失望。比如,某顶尖LLM在回答以下问题时出现了自相矛
- DeepSeek 持续火爆;微信蓝包首秀;世界级人工智能科学家许主洪加盟阿里巴巴...|网易数智日报
网易数智
网易数智日报人工智能大数据业界资讯ai云计算
DeepSeek持续火爆,多个云平台上线相关模型「抢食」算力需求AI公司DeepSeek旗下大模型DeepSeek-R1「爆火」后,多个云平台宣布上线DeepSeek旗下模型。2月5日,阅文集团宣布,旗下作家辅助创作应用“作家助手”已集成幻方量化旗下AI公司深度求索(DeepSeek)的DeepSeek-R1大模型。这是DeepSeek首次应用于网文领域,旨在为作家提供更智能的创作支持。2月4日,
- 论文笔记:Enhancing Sentence Embeddings in Generative Language Models
UQI-LIUWJ
论文阅读语言模型人工智能
2024ICIC1INTRO对于文本嵌入,过去几年的相关研究主要集中在像BERT和RoBERTa这样的判别模型上。这些模型固有的语义空间各向异性,往往需要通过大量数据集进行微调,才能生成高质量的句子嵌入。——>需要较大的训练批次,这会消耗大量的计算资源一些前沿的工作将焦点转向了最近开发的生成模型,期望利用其先进的文本理解能力,直接对输入句子进行编码,而无需额外的反向传播由于句子表示和自回归语言建模
- 【深度学习】Transformer入门:通俗易懂的介绍
知识靠谱
深度学习深度学习transformer人工智能
【深度学习】Transformer入门:通俗易懂的介绍一、引言二、从前的“读句子”方式三、Transformer的“超级阅读能力”四、Transformer是怎么做到的?五、Transformer的“多视角”能力六、Transformer的“位置记忆”七、Transformer的“翻译流程”八、Transformer为什么这么厉害?九、Transformer的应用十、总结一、引言在自然语言处理(N
- Python|基于Kimi大模型,实现对文本进行批量润色处理(4)
写python的鑫哥
AI大模型实战应用人工智能python大模型kimi语言模型润色prompt
前言本文是该专栏的第4篇,后面会持续分享AI大模型干货知识,记得关注。有的时候,我们在处理文本数据的时候,会需要对文本内容做润色处理。在介绍之前,我们先来了解“什么是润色”。文本润色,是指对已经完成的文本进行修改和改进的过程,目的是提高文本的可读性、流畅度和表达效果。这个过程可能包括纠正语法错误、调整句子结构、增强语言的表达力、统一风格和语调、改善逻辑连贯性等。润色后的文本应该更加清晰、准确、吸引
- x安全服务 y安全体系 z网络安全模型 网络安全体系设计
Hacker_LaoYi
安全web安全网络
这一年来,网络安全行业兴奋异常。各种会议、攻防大赛、黑客秀,马不停蹄。随着物联网大潮的到来,在这个到处都是安全漏洞的世界,似乎黑客才是安全行业的主宰。然而,我们看到的永远都是自己的世界,正如医生看到的都是病人,警察看到的都是罪犯,唯有跳出自己的角色去看待世界,世界才还原给你它真实的面貌。网络安全从来都不只是漏洞,安全必须要融合企业的业务运营和管理,安全必须要进行体系化的建设。网络安全,任重而道远。
- 当你给大模型一段输入之后,它是怎么得到答案的
牛不才
000-大模型chatgptAIGC文心一言gptllamaagiprompt
1.先把问题“嚼碎”(输入处理)比如你问:“太阳为什么东升西落?”切分知识点:模型会把这句话拆解成词汇单元(比如:“太阳”“为什么”“东”“升”“西”“落”),就像你背单词时先拆解句子。2.动用毕生所学(模型“回想”知识)大模型并不是真有一个“数据库”,而是依靠训练时海量的知识联结:(类似人类的经验积累)内在规律:从上学过的教材、论文、百科中记住过“地球自转导致太阳视运动”这个常识。猜测套路:统计
- 大语言模型训练数据集格式
香菜烤面包
#AI大模型语言模型人工智能深度学习
1.SFT(有监督微调)的数据集格式对于大语言模型的训练中,SFT(SupervisedFine-Tuning)的数据集格式可以采用以下方式:输入数据:输入数据是一个文本序列,通常是一个句子或者一个段落。每个样本可以是一个字符串或者是一个tokenized的文本序列。标签数据:标签数据是与输入数据对应的标签或类别。标签可以是单个类别,也可以是多个类别的集合。对于多分类任务,通常使用one-hot编
- 大模型训练 && 微调数据格式
comli_cn
大模型笔记人工智能大模型
1.SFT(有监督微调)的数据集格式?对于大语言模型的训练中,SFT(SupervisedFine-Tuning)的数据集格式可以采用以下方式:输入数据:输入数据是一个文本序列,通常是一个句子或者一个段落。每个样本可以是一个字符串或者是一个tokenized的文本序列。标签数据:标签数据是与输入数据对应的标签或类别。标签可以是单个类别,也可以是多个类别的集合。对于多分类任务,通常使用one-hot
- 自然语言处理5——词法分析
河篱
自然语言处理自然语言处理算法nlp
自然语言处理5——词法分析文章目录自然语言处理5——词法分析英文的词法分析中文的词法分析中文未登录词识别词:是语言信息处理的基本单位。词法分析步骤:词的识别:将句子序列转换为词序列形态分析:词的构成、形态变化、词形还原词性标注:标记句子中词的词性英文的词法分析英文的特点:曲折型语言,词与词之间有边界标记,词的形态变化丰富屈折变化:由于语法作用而造成的单词形态变化,但单词的词性基本不变派生变化:一个
- 【小白学AI系列】NLP 核心知识点(七)Embedding概念介绍
Blankspace空白
人工智能自然语言处理embedding
Embedding(嵌入)是自然语言处理(NLP)中非常重要的概念。简单来说,embedding是一种将离散的、稀疏的、不可直接计算的对象(比如词、字符或句子)转换为密集的、连续的向量表示的技术。这个向量通常是低维的,并且在向量空间中能够捕捉到该对象的某些语义或结构特征。可以通过这种方式将我们通常理解为文本的信息转化为模型可以处理的数字形式。1.为什么需要Embedding?传统的计算机处理文本的
- 提升信息检索准确性和效率的搜索技巧
雅俗共赏100
笔记搜索引擎
一、基础技巧精准关键词避免长句子,提取核心关键词(如用“光合作用步骤”代替“请告诉我光合作用的具体过程”)。同义词替换:尝试不同表达(如“AI发展史”vs“人工智能历史”)。排除干扰词使用减号-排除无关内容(例:苹果-手机排除科技公司结果)。精确匹配用英文引号""搜索完整短语(例:"量子力学基础教程")。二、高级搜索指令(以Google为例)限定网站site:域名关键词(例:site:zhihu.
- java 实现TextRank算法提取文章摘要
melck
java算法开发语言
在Java中,常用的文章摘要提取库是“TextRank”算法。该算法从文本中提取主题和段落,并根据主题和文本中的单词计算权重。使用TextRank实现文章摘要提取具体步骤如下:寻找文章中的关键句子:首先需要分割出文章中的句子,可以使用分词库将文章拆分成句子,然后使用TextRank算法找到文章中与主题相关的句子,这些句子通常包含有标题、关键字等。计算句子的权重:针对关键句子,需要对每个句子计算权重
- html 5中css的含义,HTML 5+CSS+JavaScript网页设计与制作
律保阁-Michael
html5中css的含义
HTML5+CSS+JavaScript网页设计与制作编辑锁定讨论上传视频《HTML5+CSS+JavaScript网页设计与制作》是2019年4月清华大学出版社出版的图书,作者是彭进香、张茂红、王玉娟、叶娟、孙秀娟、万幸、刘英。书名HTML5+CSS+JavaScript网页设计与制作作者彭进香张茂红王玉娟叶娟作者孙秀娟展开作者孙秀娟万幸刘英收起出版社清华大学出版社出版时间2019年4月定价48
- 利用人工智能增强可读性:自动为文本添加标点符号
姚家湾
AI标点符号
在数字通信时代,文本的清晰度和可读性至关重要。无论是转录口语、处理原始文本数据还是改进用户生成的内容,标点符号在传达预期信息方面都起着至关重要的作用。但是,手动编辑文本以添加标点符号可能非常耗时且容易出错。这就是人工智能(AI)发挥作用的地方,它提供了一种强大的解决方案,可以自动将标点符号插入句子中。目前,利用大模型的能力,完全可以胜任添加标点符号的工作,不需要其它特别的处理程序。参考代码from
- Java 设计模式之解释器模式
xiangxiongfly915
#Java设计模式java设计模式解释器模式
文章目录Java设计模式之解释器模式概述UML代码实现Java设计模式之解释器模式概述解释器模式(interpreter):给定一个语言,定义它的文法的一种表示,并定义一个解释器,这个解释器使用该表示来解释语言中的句子。如果一种特定类型的问题发生的频率足够高,那么可能就值得将该问题的各个实例表述为一个简单语言中的句子。这样就可以构建一个解释器,该解释器通过解释这些句子来解决该问题。UMLAbstr
- 基于 HanLP 的句子结构分析与关系抽取
梦落青云
知识图谱javaHanLP
一、引言自然语言处理(NLP)是人工智能领域的重要分支,旨在让计算机理解和处理人类语言。句子结构分析和关系抽取是NLP中的关键任务,它们可以帮助我们理解句子的语法结构和语义关系。HanLP是一款功能强大的中文自然语言处理工具包,提供了丰富的功能,包括分词、词性标注、依存句法分析等。本文将介绍如何使用HanLP进行句子结构分析与关系抽取。二、HanLP简介HanLP是由汉语言技术实验室开发的开源中文
- DeepSeek-V3的混合专家(MoE)架构
阿湯哥
架构微服务云原生
DeepSeek-V3的混合专家(MoE)架构具有多方面的创新设计,以下是详细介绍:架构原理模块构成:MoE架构核心是在前馈网络(FFN)中采用专家混合模型。将模型划分为多个专家网络,每个专家可看作一个子模型,负责处理特定类型的任务或数据模式。如在语言翻译中,有专门处理中文语法的专家,也有负责生成英文句子结构的专家。DeepSeek-V3包含大量专家,如256个专家模型,总参数量达6710亿。动态
- 《大模型应用开发极简入门》随记
hoypte
人工智能
术语:自然语言处理(NLP)人工智能(AI)大预言模型(LLM)机器学习(ML)深度学习(DL)内容LLM概述ML算法被称为人工神经网络DL是ML的一个分支最先开始简单语言模型吗,例如:n-gram模型(通过词频来根据前面的词预测句子里下一个词---可能生成不连贯的词),为了提升性能引入循环神经网络(RNN)和长短期记忆(LSTM)网络---处理大量数据效率还是不行。Transformer架构架构
- 情感分析研究综述:方法演化与前沿挑战
next_travel
人工智能机器学习深度学习
文章目录摘要abstract1.引言2.模型方法2.1文本情感分析2.1.1文档级情感分类2.1.2句子级情感分类2.1.3方面级情感分类2.2文本情感分析方法2.2.1基于词典的方法2.2.2基于机器学习的方法2.2.3基于深度学习方法2.3视觉情感分析2.4音频情感分析2.5多模态情感分析2.5.1图文方法2.5.2视听方法2.5.3音频-图像-文本方法3.情感分析的挑战3.1讥讽检测3.2模
- DeepSeek自研AI芯片,AI算力新变革?
人工智能深度学习机器学习算法
最近,DigiTimes的一份报告让AI圈炸开了锅:DeepSeek正全力开发专有AI芯片。有消息称,DeepSeek已开启大规模半导体设计人才招聘,种种迹象表明,其自研芯片计划已从设想步入实质推进阶段。AI算力告急,成本掣肘发展当下,AI技术迅猛发展,从科研领域的复杂模型训练,到日常生活里智能语音助手的实时交互,算力成了决定AI发展的关键因素。作为大模型领域的后起之秀,DeepSeek对计算资源
- Jieba分词算法应用
C嘎嘎嵌入式开发
算法服务器数据库c++linux
1.Jieba分词算法简介Jieba是一个用于中文分词的Python库,其核心思想是基于词典和统计模型来进行分词。由于中文文本中没有明显的单词边界,因此分词是中文处理中的一个重要任务。Jieba提供了以下几种主要的分词模式:精确模式:尽可能准确地切分句子,适合用于文本分析。全模式:将句子中所有可能的词语都切分出来,适合用于搜索引擎。搜索引擎模式:在精确模式的基础上,对长词再次切分,适合用于搜索引擎
- 【Vim Masterclass 笔记13】第 7 章:Vim 核心操作之——文本对象与宏操作 + S07L28:Vim 文本对象
安冬的码畜日常
VimMasterclassvim笔记vim文本对象文本对象
文章目录Section7:TextObjectsandMacrosS07L28TextObjects1文本对象的含义2操作文本对象的基本语法3操作光标所在的整个单词4删除光标所在的整个句子5操作光标所在的整个段落6删除光标所在的中括号内的文本7删除光标所在的小括号内的文本8操作尖括号内的文本9操作光标所在的标签文本10操作大括号内的文本11操作光标所在的各种括号内的文本12本节思维导图写在前面本篇
- html页面js获取参数值
0624chenhong
html
1.js获取参数值js
function GetQueryString(name)
{
var reg = new RegExp("(^|&)"+ name +"=([^&]*)(&|$)");
var r = windo
- MongoDB 在多线程高并发下的问题
BigCat2013
mongodbDB高并发重复数据
最近项目用到 MongoDB , 主要是一些读取数据及改状态位的操作. 因为是结合了最近流行的 Storm进行大数据的分析处理,并将分析结果插入Vertica数据库,所以在多线程高并发的情境下, 会发现 Vertica 数据库中有部分重复的数据. 这到底是什么原因导致的呢?笔者开始也是一筹莫 展,重复去看 MongoDB 的 API , 终于有了新发现 :
com.mongodb.DB 这个类有
- c++ 用类模版实现链表(c++语言程序设计第四版示例代码)
CrazyMizzz
数据结构C++
#include<iostream>
#include<cassert>
using namespace std;
template<class T>
class Node
{
private:
Node<T> * next;
public:
T data;
- 最近情况
麦田的设计者
感慨考试生活
在五月黄梅天的岁月里,一年两次的软考又要开始了。到目前为止,我已经考了多达三次的软考,最后的结果就是通过了初级考试(程序员)。人啊,就是不满足,考了初级就希望考中级,于是,这学期我就报考了中级,明天就要考试。感觉机会不大,期待奇迹发生吧。这个学期忙于练车,写项目,反正最后是一团糟。后天还要考试科目二。这个星期真的是很艰难的一周,希望能快点度过。
- linux系统中用pkill踢出在线登录用户
被触发
linux
由于linux服务器允许多用户登录,公司很多人知道密码,工作造成一定的障碍所以需要有时踢出指定的用户
1/#who 查出当前有那些终端登录(用 w 命令更详细)
# who
root pts/0 2010-10-28 09:36 (192
- 仿QQ聊天第二版
肆无忌惮_
qq
在第一版之上的改进内容:
第一版链接:
http://479001499.iteye.com/admin/blogs/2100893
用map存起来号码对应的聊天窗口对象,解决私聊的时候所有消息发到一个窗口的问题.
增加ViewInfo类,这个是信息预览的窗口,如果是自己的信息,则可以进行编辑.
信息修改后上传至服务器再告诉所有用户,自己的窗口
- java读取配置文件
知了ing
1,java读取.properties配置文件
InputStream in;
try {
in = test.class.getClassLoader().getResourceAsStream("config/ipnetOracle.properties");//配置文件的路径
Properties p = new Properties()
- __attribute__ 你知多少?
矮蛋蛋
C++gcc
原文地址:
http://www.cnblogs.com/astwish/p/3460618.html
GNU C 的一大特色就是__attribute__ 机制。__attribute__ 可以设置函数属性(Function Attribute )、变量属性(Variable Attribute )和类型属性(Type Attribute )。
__attribute__ 书写特征是:
- jsoup使用笔记
alleni123
java爬虫JSoup
<dependency>
<groupId>org.jsoup</groupId>
<artifactId>jsoup</artifactId>
<version>1.7.3</version>
</dependency>
2014/08/28
今天遇到这种形式,
- JAVA中的集合 Collectio 和Map的简单使用及方法
百合不是茶
listmapset
List ,set ,map的使用方法和区别
java容器类类库的用途是保存对象,并将其分为两个概念:
Collection集合:一个独立的序列,这些序列都服从一条或多条规则;List必须按顺序保存元素 ,set不能重复元素;Queue按照排队规则来确定对象产生的顺序(通常与他们被插入的
- 杀LINUX的JOB进程
bijian1013
linuxunix
今天发现数据库一个JOB一直在执行,都执行了好几个小时还在执行,所以想办法给删除掉
系统环境:
ORACLE 10G
Linux操作系统
操作步骤如下:
第一步.查询出来那个job在运行,找个对应的SID字段
select * from dba_jobs_running--找到job对应的sid
&n
- Spring AOP详解
bijian1013
javaspringAOP
最近项目中遇到了以下几点需求,仔细思考之后,觉得采用AOP来解决。一方面是为了以更加灵活的方式来解决问题,另一方面是借此机会深入学习Spring AOP相关的内容。例如,以下需求不用AOP肯定也能解决,至于是否牵强附会,仁者见仁智者见智。
1.对部分函数的调用进行日志记录,用于观察特定问题在运行过程中的函数调用
- [Gson六]Gson类型适配器(TypeAdapter)
bit1129
Adapter
TypeAdapter的使用动机
Gson在序列化和反序列化时,默认情况下,是按照POJO类的字段属性名和JSON串键进行一一映射匹配,然后把JSON串的键对应的值转换成POJO相同字段对应的值,反之亦然,在这个过程中有一个JSON串Key对应的Value和对象之间如何转换(序列化/反序列化)的问题。
以Date为例,在序列化和反序列化时,Gson默认使用java.
- 【spark八十七】给定Driver Program, 如何判断哪些代码在Driver运行,哪些代码在Worker上执行
bit1129
driver
Driver Program是用户编写的提交给Spark集群执行的application,它包含两部分
作为驱动: Driver与Master、Worker协作完成application进程的启动、DAG划分、计算任务封装、计算任务分发到各个计算节点(Worker)、计算资源的分配等。
计算逻辑本身,当计算任务在Worker执行时,执行计算逻辑完成application的计算任务
- nginx 经验总结
ronin47
nginx 总结
深感nginx的强大,只学了皮毛,把学下的记录。
获取Header 信息,一般是以$http_XX(XX是小写)
获取body,通过接口,再展开,根据K取V
获取uri,以$arg_XX
&n
- 轩辕互动-1.求三个整数中第二大的数2.整型数组的平衡点
bylijinnan
数组
import java.util.ArrayList;
import java.util.Arrays;
import java.util.List;
public class ExoWeb {
public static void main(String[] args) {
ExoWeb ew=new ExoWeb();
System.out.pri
- Netty源码学习-Java-NIO-Reactor
bylijinnan
java多线程netty
Netty里面采用了NIO-based Reactor Pattern
了解这个模式对学习Netty非常有帮助
参考以下两篇文章:
http://jeewanthad.blogspot.com/2013/02/reactor-pattern-explained-part-1.html
http://gee.cs.oswego.edu/dl/cpjslides/nio.pdf
- AOP通俗理解
cngolon
springAOP
1.我所知道的aop 初看aop,上来就是一大堆术语,而且还有个拉风的名字,面向切面编程,都说是OOP的一种有益补充等等。一下子让你不知所措,心想着:怪不得很多人都和 我说aop多难多难。当我看进去以后,我才发现:它就是一些java基础上的朴实无华的应用,包括ioc,包括许许多多这样的名词,都是万变不离其宗而 已。 2.为什么用aop&nb
- cursor variable 实例
ctrain
variable
create or replace procedure proc_test01
as
type emp_row is record(
empno emp.empno%type,
ename emp.ename%type,
job emp.job%type,
mgr emp.mgr%type,
hiberdate emp.hiredate%type,
sal emp.sal%t
- shell报bash: service: command not found解决方法
daizj
linuxshellservicejps
今天在执行一个脚本时,本来是想在脚本中启动hdfs和hive等程序,可以在执行到service hive-server start等启动服务的命令时会报错,最终解决方法记录一下:
脚本报错如下:
./olap_quick_intall.sh: line 57: service: command not found
./olap_quick_intall.sh: line 59
- 40个迹象表明你还是PHP菜鸟
dcj3sjt126com
设计模式PHP正则表达式oop
你是PHP菜鸟,如果你:1. 不会利用如phpDoc 这样的工具来恰当地注释你的代码2. 对优秀的集成开发环境如Zend Studio 或Eclipse PDT 视而不见3. 从未用过任何形式的版本控制系统,如Subclipse4. 不采用某种编码与命名标准 ,以及通用约定,不能在项目开发周期里贯彻落实5. 不使用统一开发方式6. 不转换(或)也不验证某些输入或SQL查询串(译注:参考PHP相关函
- Android逐帧动画的实现
dcj3sjt126com
android
一、代码实现:
private ImageView iv;
private AnimationDrawable ad;
@Override
protected void onCreate(Bundle savedInstanceState)
{
super.onCreate(savedInstanceState);
setContentView(R.layout
- java远程调用linux的命令或者脚本
eksliang
linuxganymed-ssh2
转载请出自出处:
http://eksliang.iteye.com/blog/2105862
Java通过SSH2协议执行远程Shell脚本(ganymed-ssh2-build210.jar)
使用步骤如下:
1.导包
官网下载:
http://www.ganymed.ethz.ch/ssh2/
ma
- adb端口被占用问题
gqdy365
adb
最近重新安装的电脑,配置了新环境,老是出现:
adb server is out of date. killing...
ADB server didn't ACK
* failed to start daemon *
百度了一下,说是端口被占用,我开个eclipse,然后打开cmd,就提示这个,很烦人。
一个比较彻底的解决办法就是修改
- ASP.NET使用FileUpload上传文件
hvt
.netC#hovertreeasp.netwebform
前台代码:
<asp:FileUpload ID="fuKeleyi" runat="server" />
<asp:Button ID="BtnUp" runat="server" onclick="BtnUp_Click" Text="上 传" />
- 代码之谜(四)- 浮点数(从惊讶到思考)
justjavac
浮点数精度代码之谜IEEE
在『代码之谜』系列的前几篇文章中,很多次出现了浮点数。 浮点数在很多编程语言中被称为简单数据类型,其实,浮点数比起那些复杂数据类型(比如字符串)来说, 一点都不简单。
单单是说明 IEEE浮点数 就可以写一本书了,我将用几篇博文来简单的说说我所理解的浮点数,算是抛砖引玉吧。 一次面试
记得多年前我招聘 Java 程序员时的一次关于浮点数、二分法、编码的面试, 多年以后,他已经称为了一名很出色的
- 数据结构随记_1
lx.asymmetric
数据结构笔记
第一章
1.数据结构包括数据的
逻辑结构、数据的物理/存储结构和数据的逻辑关系这三个方面的内容。 2.数据的存储结构可用四种基本的存储方法表示,它们分别是
顺序存储、链式存储 、索引存储 和 散列存储。 3.数据运算最常用的有五种,分别是
查找/检索、排序、插入、删除、修改。 4.算法主要有以下五个特性:
输入、输出、可行性、确定性和有穷性。 5.算法分析的
- linux的会话和进程组
网络接口
linux
会话: 一个或多个进程组。起于用户登录,终止于用户退出。此期间所有进程都属于这个会话期。会话首进程:调用setsid创建会话的进程1.规定组长进程不能调用setsid,因为调用setsid后,调用进程会成为新的进程组的组长进程.如何保证? 先调用fork,然后终止父进程,此时由于子进程的进程组ID为父进程的进程组ID,而子进程的ID是重新分配的,所以保证子进程不会是进程组长,从而子进程可以调用se
- 二维数组 元素的连续求解
1140566087
二维数组ACM
import java.util.HashMap;
public class Title {
public static void main(String[] args){
f();
}
// 二位数组的应用
//12、二维数组中,哪一行或哪一列的连续存放的0的个数最多,是几个0。注意,是“连续”。
public static void f(){
- 也谈什么时候Java比C++快
windshome
javaC++
刚打开iteye就看到这个标题“Java什么时候比C++快”,觉得很好笑。
你要比,就比同等水平的基础上的相比,笨蛋写得C代码和C++代码,去和高手写的Java代码比效率,有什么意义呢?
我是写密码算法的,深刻知道算法C和C++实现和Java实现之间的效率差,甚至也比对过C代码和汇编代码的效率差,计算机是个死的东西,再怎么优化,Java也就是和C