- 《突破性能瓶颈,用 Rust + WASM 实现浏览器端FFT加速300%实战》
煜bart
人工智能机器人
引言:当JavaScript遇上硬核计算**“为什么我的音频分析页面卡到崩溃?”这是前端工程师在实现实时频谱可视化时最常见的噩梦。传统JavaScript的FFT计算在万级数据点时就会引发严重卡顿,但今天我们将用**Rust+WebAssembly**的组合拳,在浏览器中实现**零依赖、300%加速的傅里叶变换**。无需WebGL黑魔法,直接上硬核代码!---###**一、血腥现场:JS的Type
- SciPy 安装指南
froginwe11
开发语言
SciPy安装指南引言SciPy是一个开源的Python科学计算库,它基于NumPy库,提供了大量的科学和工程计算功能。SciPy包含了用于优化、线性代数、积分、插值、信号和图像处理、特殊函数、统计分析、离散傅里叶变换等功能的模块。本文将详细介绍如何在您的系统上安装SciPy。安装前的准备在开始安装SciPy之前,请确保您的系统满足以下条件:您已安装Python,且版本在3.5或更高。您已安装pi
- 深度学习处理时间序列(2)
yyc_audio
深度学习笔记深度学习人工智能
在数据中寻找周期性在多个时间尺度上的周期性,是时间序列数据非常重要且常见的属性。无论是天气、商场停车位使用率、网站流量、杂货店销售额,还是健身追踪器记录的步数,你都会看到每日周期性和年度周期性(人类生成的数据通常还有每周的周期性)。探索数据时,一定要注意寻找这些模式。(让人想到波,想到傅里叶变换)对于这个数据集,如果你想根据前几个月的数据来预测下个月的平均温度,那么问题很简单,因为数据具有可靠的年
- 探地雷达F-K偏移算法详解与Python实现
T2ccc
探地雷达算法python
探地雷达F-K偏移算法详解与Python实现文章目录探地雷达F-K偏移算法详解与Python实现前言一、探地雷达成像原理与偏移的必要性二、F-K偏移的基本原理2.1波的传播与频率-波数域2.2F-K偏移的基本思路三、F-K偏移算法的数学推导3.1二维傅里叶变换3.2波场外推3.3Stolt映射(核心步骤)3.4逆变换四、F-K偏移的Python代码实现4.1辅助函数和数据准备4.2F-K偏移核心函
- 数字信号处理之 快速傅里叶变换(FFT)
墨痕_777
信号处理算法
文章目录快速傅里叶变换(FFT)一、直接计算DFT的问题和改善DFT运算效率的基本途径直接计算DFT的问题改善DFT运算效率的基本途径二、按时间抽取(DIT)的FFT算法(库利-图基算法)算法原理按时间抽取的FFT算法与直接计算DFT运算量的比较按时间抽取的FFT算法的特点按时间抽取的FFT算法的若干变体三、按频率抽取(DIF)的FFT算法(桑德-图基算法)算法原理时间抽取算法与频率抽取算法的比较
- CV:傅里叶变换
壹十壹
CV人工智能计算机视觉python
图像中的傅里叶变换主要指将图像从空间域转换到频域的过程。通过傅里叶变换,我们可以将图像看作是不同频率正弦波的叠加,这有助于分析图像的周期性特征、纹理和噪声等信息。主要概念频域表示幅值谱(MagnitudeSpectrum):反映了各个频率成分的能量或强度。低频部分一般对应图像中的整体轮廓和大致结构,高频部分则反映图像的边缘、细节和噪声。相位谱(PhaseSpectrum):包含了图像的空间位置信息
- 电机的声音数据进行AI分析
鹿屿二向箔
人工智能
对电机的声音数据进行分析,尤其是当数据来源于加速度传感器时,涉及到的不仅仅是声音分析,还包含了振动分析。这类问题通常可以归类于机械故障诊断或预测性维护领域。以下是一些适合处理这种类型数据的人工智能模型和方法:1.特征工程+传统机器学习模型在直接应用深度学习之前,通常首先会进行特征提取。对于振动信号(即使通过加速度传感器采集),常用的方法包括计算频域特征(如傅里叶变换后的频谱)、时域特征(如均方根值
- 用matlab语言进行傅里叶分析
贫僧法号止尘
matlab傅立叶分析开发语言
在MATLAB中,可以使用fft函数执行快速傅里叶变换(FFT)并获取信号的频谱信息。下面是一些用于进行傅里叶分析的MATLAB代码示例:假设我们有一个长度为N的时域信号x,我们可以使用以下代码将其转换为频域信号X:%定义信号长度和采样频率N=1024;Fs=1000;%创建一个随机信号t=(0:N-1)/Fs;x=randn(1,N);%计算信号的傅里叶变换X=fft(x);%计算频率向量f=(
- 01计算机视觉学习计划
依旧阳光的老码农
计算机视觉计算机视觉人工智能
计算机视觉系统学习计划(3-6个月)本计划按照数学→编程→图像处理→机器学习→深度学习→3D视觉→项目实战的顺序,确保从基础到高级,结合理论和实践。第一阶段(第1-2个月):基础夯实✅目标:掌握数学基础、Python/C++编程、基本图像处理1️⃣数学基础(2周)每日2小时线性代数:矩阵运算、特征值分解(推荐《线性代数及其应用》)概率统计:高斯分布、贝叶斯定理微积分:偏导数、梯度下降傅里叶变换:图
- python中的numpy库有什么优缺点_python中关于numpy库的介绍
weixin_34938347
1.Numpy是什么?NumPy(NumericalPython的缩写)是一个开源的Python科学计算库。使用NumPy,就可以很自然地使用数组和矩阵。NumPy包含很多实用的数学函数,涵盖线性代数运算、傅里叶变换和随机数生成等功能。这个库的前身是1995年就开始开发的一个用于数组运算的库。经过了长时间的发展,基本上成了绝大部分Python科学计算的基础包,当然也包括所有提供Python接口的深
- [自然语言处理基础]NumPy基本操作
Steve lu
自然语言处理NLP自然语言处理numpypythonconda人工智能机器学习深度学习
什么是NumPyNumPy是Python中科学计算的基本包。它是一个Python库,提供多维数组对象、各种派生对象(如掩码数组和矩阵)以及用于对数组进行快速操作的各种例程,包括数学、逻辑、形状操作、排序、选择、I/O、离散傅里叶变换、基本线性代数、基本统计运算、随机模拟等等。NumPy数组在创建时具有固定大小,这与Python列表(可以动态增长)不同。更改数组的大小ndarray将创建新数组并删除
- 信号处理基础:信号的时域和频域分析_(9).傅里叶变换
kkchenkx
信号处理技术仿真模拟信号处理
傅里叶变换引言傅里叶变换是一种将信号从时域转换到频域的数学工具。通过傅里叶变换,可以将复杂的时域信号分解为一系列简单的基本频率分量,这对于信号的分析、处理和设计具有重要意义。傅里叶变换在信号处理领域有着广泛的应用,包括滤波、频谱分析、通信系统设计等。傅里叶级数连续时间傅里叶级数(CTFS)连续时间傅里叶级数(Continuous-TimeFourierSeries,CTFS)是一种将周期性连续时间
- 嵌入式开发:傅里叶变换(4):在 STM32上面实现FFT(基于STM32L071KZT6 HAL库+DSP库)
魂兮-龙游
嵌入式开发stm32嵌入式硬件单片机DSP库数字信号处理
目录步骤1:准备工作步骤2:创建Keil项目,并配置工程步骤3:在MDK工程上添加CMSIS-DSP库步骤5:编写代码步骤6:配置时钟和优化步骤7:调试与验证步骤8:优化和调整注意事项:在STM32L071KZT6上使用MDK(KeiluVision)移植DSP库源码,并且基于HAL库进行开发,可以按照以下步骤进行操作:步骤1:准备工作安装KeilMDK:。安装STM32CubeMX:参考博客:S
- 嵌入式综合-心得与笔记【1】
sakura_sea
EmbeddedsystemandHPC嵌入式
文章目录时域信号时域转频域信号傅里叶变换将时域信号转换为频域信号快速傅里叶变换FFT计算离散傅里叶变换参考文献时域信号importnumpyasnpimportmatplotlib.pyplotasplt#设置Matplotlib支持中文plt.rcParams['font.sans-serif']=['SimHei']#设置字体为SimHeiplt.rcParams['axes.unicode_
- 频域分析:利用傅里叶变换(Fourier Transform)对图像进行深度解析
那雨倾城
OpenCV应用计算机视觉图像处理pythonopencv视觉检测
在图像处理和计算机视觉领域,傅里叶变换(FourierTransform)是一项基础而强大的工具。它将时域信号(如图像)转化为频域信号,为我们提供了图像的频率特性,这对于图像的分析、压缩、去噪和特征提取等任务非常重要。本文将深入探讨傅里叶变换在图像中的应用,并通过实例展示如何利用傅里叶变换对输入图像进行频域分析。1.什么是傅里叶变换?傅里叶变换是一种数学变换,它将信号从时域(或空间域)转换到频域。
- LTI的频域分析matlab,lti系统的频域分析实验报告.docx
Fred Camille
LTI的频域分析matlab
lti系统的频域分析实验报告实验4LTI系统的频域分析一、实验目的1)加深对LTI系统频率响应的基本概念的掌握和理解。2)学习和掌握LTI系统频率特性的分析方法。二、实验原理与方法1.连续时间系统的频率响应系统的频率响应定义为系统单位冲击响应h(t)的傅里叶变换,即??H(?)????h(?)e?j??d?若LTI连续时间系统的单位冲激响应为h(t),输入信号为x(t),根据系统的时域分析可知系统
- 嵌入式开发:傅里叶变换(5):基于STM32-DSP库实现
魂兮-龙游
嵌入式开发FFT快速傅里叶变换滤波数字信号处理嵌入式开发物联网
目录1.准备工作2.函数介绍1.arm_rfft_instance_f32结构体2.arm_rfft_fast_init_f32函数3.arm_rfft_fast_f32函数4.FFT的执行过程4.编写FFT实现代码4.1初始化FFT实例4.2配置FFT长度和初始化实例4.3填充输入数据4.4执行FFT4.5处理结果5.主函数6.编译和调试7.总结在STM32上使用CMSIS-DSP库实现快速傅里
- 短时傅里叶变换(STFT)与逆变换(ISTFT)
niuguangshuo
音频算法python信号处理傅里叶分析
引言短时傅里叶变换(Short-TimeFourierTransform,STFT)是一种将信号分解为时间和频率成分的技术,广泛应用于音频处理、语音分析和音乐信息检索等领域。通过STFT,我们可以分析信号在不同时间段的频率特性。本文将介绍STFT的基本原理、计算过程、输入和输出维度,以及如何使用逆短时傅里叶变换(InverseShort-TimeFourierTransform,ISTFT)将频域
- [总结] 音视频开发工程师之路
二进制怪兽
音视频音视频
前言音视频开发是一个涉及多个技术领域的复杂方向,涵盖了音频处理、视频渲染、编解码技术、流媒体传输等多个方面。以下是一个简要的学习路线指南,帮助你逐步掌握音视频开发的核心技能。基础知识计算机科学基础:掌握操作系统、计算机网络、数据结构和算法等基础知识。数学基础:了解傅里叶变换、线性代数、信号处理等数学知识,这些是音视频编-解码和处理的基石。编程语言:熟练掌握C/C++,这是音视频开发中最常用的语言;
- 基于傅里叶变换的图片模糊度判断
点PY
智能感知处理opencv计算机视觉人工智能
文章目录概要效果源码概要傅里叶变换可以将图像从空间域转换到频率域。清晰图像在频率域中具有更多的高频成分,而模糊图像的高频成分较少。计算图像的傅里叶变换。分析频率域中高频成分的比例。根据高频成分的比例判断图像是否模糊。效果源码#include#include
- 基于 STM32 平台的音频特征提取与歌曲风格智能识别系统
赵谨言
论文经验分享毕业设计
标题:基于STM32平台的音频特征提取与歌曲风格智能识别系统内容:1.摘要摘要:本文介绍了一种基于STM32平台的音频特征提取与歌曲风格智能识别系统。该系统通过对音频信号进行特征提取和分析,实现了对歌曲风格的自动识别。在特征提取方面,系统采用了快速傅里叶变换(FFT)和梅尔频率倒谱系数(MFCC)等方法,对音频信号进行了时频域分析和声学特征提取。在歌曲风格识别方面,系统采用了支持向量机(SVM)和
- 有限长序列的z变换收敛域_几类序列的Z变换收敛域.PPT
沈阳无距科技
有限长序列的z变换收敛域
几类序列的Z变换收敛域第七章离散时间系统的Z域分析本章的主要内容z变换定义、典型序列的z变换z变换的收敛域逆z变换z变换的基本性质z变换与拉氏变换的关系利用z变换解差分方程离散系统的系统函数序列的傅里叶变换第一节引言一、Z变换方法的发展历史1730年,英国数学家棣莫弗(DeMoivre1667-1754)将生成函数(generationfunction)的概念引入概率理论中。19世纪拉普拉斯(P.
- 音频进阶学习九——离散时间傅里叶变换DTFT
山河君
#语音信号处理学习信号处理
文章目录前言一、DTFT的解释1.DTFT公式2.DTFT右边释义1)复指数e−jωne^{-j\omegan}e−jωn2)序列与复指数相乘x[n]∗e−jωnx[n]*e^{-j\omegan}x[n]∗e−jωn复指数序列复数的共轭正交正交集3)复指数序列求和3.DTFT左边边释义1)实部与虚部2)幅度与相位二、IDTFT1.逆离散时间的傅里叶变换2.IDTFT验证总结前言按照傅里叶发展的历
- 嵌入式开发:傅里叶变换(1):理论
魂兮-龙游
嵌入式开发人工智能傅里叶变换滤波离散傅里叶变换DFT
目录1.傅里叶变换的四种类型2.计算机处理的核心方法:离散傅里叶变换(DFT)3.实数DFT与复数DFT4.实际应用中的关键挑战傅立叶变换是一种分析信号的方法,它可分析信号的成分,也可用这些成分合成信号。傅里叶原理表明:任何连续测量的时序或信号,都可以表示为不同频率的正弦波信号的无限叠加。而根据该原理创立的傅里叶变换算法利用直接测量到的原始信号,以累加方式来计算该信号中不同正弦波信号的频率、振幅和
- 学习笔记(1):Python+OpenCV计算机视觉-傅里叶变换的理论基础
小韩二子
研发管理python计算机视觉opencv人工智能
立即学习:https://edu.csdn.net/course/play/10552/234966?utm_source=blogtoedu任何连续周期信号,可以由一组适当的正弦曲线组合而成时域-频域
- 数据降维技术研究:Karhunen-Loève展开与快速傅里叶变换的理论基础及应用
人工智能机器学习python
在现代科学计算和数据分析领域,数据降维与压缩技术对于处理高维数据具有重要意义。本文主要探讨两种基础而重要的数学工具:Karhunen-Loève展开(KLE)和快速傅里叶变换(FFT)。通过分析这两种方法的理论基础和应用特点,阐述它们在数据降维中的优势和适用场景。Karhunen-Loève展开的理论与应用理论基础Karhunen-Loève展开是一种基于随机过程谱分解的降维方法。它通过构建最优正
- 傅里叶变换理解
KL_lililli
笔记
傅里叶变换(FourierTransform)是一种数学工具,它可以把复杂的信号分解成不同频率的正弦波。就像我们把一首歌分解成不同的音调(低音、中音、高音)一样,傅里叶变换能帮我们看清信号里有哪些频率成分。严格来讲其实傅里叶又有多种形式,大致是傅里叶级数,离散傅里叶级数,傅里叶变换....但是这里我们着重讲关于傅里叶的理解,并不会涉及到严格的公式推导,只希望大家看完这篇文章可以知道傅里叶变换究竟是
- 【Numpy核心编程攻略:Python数据处理、分析详解与科学计算】2.20 傅里叶变换:从时域到频域的算法实现
精通代码大仙
numpypythonnumpypython算法
2.20傅里叶变换:从时域到频域的算法实现目录《傅里叶变换:从时域到频域的算法实现》2.20.1FFT算法原理2.20.2复数数组存储优化2.20.3频域滤波案例2.20.4音频处理案例2.20.5与CUFFT性能对比2.20.6总结2.20.7参考文献2.20.1FFT算法原理傅里叶变换(FourierTransform,FT)是一种将时域信号转换为频域信号的数学工具,而快速傅里叶变换(Fast
- 方波的傅里叶变换及方波的MATLAB实现
xrgs_shz
matlab开发语言
一、傅里叶变换简介傅里叶变换,表示能将满足一定条件的某个函数表示成三角函数(正弦和/或余弦函数)或者它们的积分的线性组合。傅里叶变换是一种线性的积分变换。它的理论依据是:任何连续周期信号都可以由一组适当的正弦曲线组合而成,即使用简单的正弦、余弦函数,可以拟合复杂函数。为什么要进行傅里叶变换?傅里叶变换是一种数学工具,能够将时域信号转换为频域信号。具体来说,傅里叶变换将时域波形信号转换为离散的频
- 通过范围/多普勒快速傅里叶变换(FFT)方法从模拟的调频连续波(FMCW)波形雷达信号中生成目标并检测其范围和速度,并使用二维恒虚警率(CFAR)可视化显示目标(Matlab代码实现)
程序猿鑫
matlab算法目标跟踪
欢迎来到本博客❤️❤️博主优势:博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。⛳️座右铭:行百里者,半于九十。本文目录如下:目录⛳️赠与读者1概述2运行结果3参考文献4Matlab代码实现⛳️赠与读者做科研,涉及到一个深在的思想系统,需要科研者逻辑缜密,踏实认真,但是不能只是努力,很多时候借力比努力更重要,然后还要有仰望星空的创新点和启发点。建议读者按目录次序逐一浏览,免得骤然跌入幽暗的迷宫
- jvm调优总结(从基本概念 到 深度优化)
oloz
javajvmjdk虚拟机应用服务器
JVM参数详解:http://www.cnblogs.com/redcreen/archive/2011/05/04/2037057.html
Java虚拟机中,数据类型可以分为两类:基本类型和引用类型。基本类型的变量保存原始值,即:他代表的值就是数值本身;而引用类型的变量保存引用值。“引用值”代表了某个对象的引用,而不是对象本身,对象本身存放在这个引用值所表示的地址的位置。
- 【Scala十六】Scala核心十:柯里化函数
bit1129
scala
本篇文章重点说明什么是函数柯里化,这个语法现象的背后动机是什么,有什么样的应用场景,以及与部分应用函数(Partial Applied Function)之间的联系 1. 什么是柯里化函数
A way to write functions with multiple parameter lists. For instance
def f(x: Int)(y: Int) is a
- HashMap
dalan_123
java
HashMap在java中对很多人来说都是熟的;基于hash表的map接口的非同步实现。允许使用null和null键;同时不能保证元素的顺序;也就是从来都不保证其中的元素的顺序恒久不变。
1、数据结构
在java中,最基本的数据结构无外乎:数组 和 引用(指针),所有的数据结构都可以用这两个来构造,HashMap也不例外,归根到底HashMap就是一个链表散列的数据
- Java Swing如何实时刷新JTextArea,以显示刚才加append的内容
周凡杨
java更新swingJTextArea
在代码中执行完textArea.append("message")后,如果你想让这个更新立刻显示在界面上而不是等swing的主线程返回后刷新,我们一般会在该语句后调用textArea.invalidate()和textArea.repaint()。
问题是这个方法并不能有任何效果,textArea的内容没有任何变化,这或许是swing的一个bug,有一个笨拙的办法可以实现
- servlet或struts的Action处理ajax请求
g21121
servlet
其实处理ajax的请求非常简单,直接看代码就行了:
//如果用的是struts
//HttpServletResponse response = ServletActionContext.getResponse();
// 设置输出为文字流
response.setContentType("text/plain");
// 设置字符集
res
- FineReport的公式编辑框的语法简介
老A不折腾
finereport公式总结
FINEREPORT用到公式的地方非常多,单元格(以=开头的便被解析为公式),条件显示,数据字典,报表填报属性值定义,图表标题,轴定义,页眉页脚,甚至单元格的其他属性中的鼠标悬浮提示内容都可以写公式。
简单的说下自己感觉的公式要注意的几个地方:
1.if语句语法刚接触感觉比较奇怪,if(条件式子,值1,值2),if可以嵌套,if(条件式子1,值1,if(条件式子2,值2,值3)
- linux mysql 数据库乱码的解决办法
墙头上一根草
linuxmysql数据库乱码
linux 上mysql数据库区分大小写的配置
lower_case_table_names=1 1-不区分大小写 0-区分大小写
修改/etc/my.cnf 具体的修改内容如下:
[client]
default-character-set=utf8
[mysqld]
datadir=/var/lib/mysql
socket=/va
- 我的spring学习笔记6-ApplicationContext实例化的参数兼容思想
aijuans
Spring 3
ApplicationContext能读取多个Bean定义文件,方法是:
ApplicationContext appContext = new ClassPathXmlApplicationContext(
new String[]{“bean-config1.xml”,“bean-config2.xml”,“bean-config3.xml”,“bean-config4.xml
- mysql 基准测试之sysbench
annan211
基准测试mysql基准测试MySQL测试sysbench
1 执行如下命令,安装sysbench-0.5:
tar xzvf sysbench-0.5.tar.gz
cd sysbench-0.5
chmod +x autogen.sh
./autogen.sh
./configure --with-mysql --with-mysql-includes=/usr/local/mysql
- sql的复杂查询使用案列与技巧
百合不是茶
oraclesql函数数据分页合并查询
本片博客使用的数据库表是oracle中的scott用户表;
------------------- 自然连接查询
查询 smith 的上司(两种方法)
&
- 深入学习Thread类
bijian1013
javathread多线程java多线程
一. 线程的名字
下面来看一下Thread类的name属性,它的类型是String。它其实就是线程的名字。在Thread类中,有String getName()和void setName(String)两个方法用来设置和获取这个属性的值。
同时,Thr
- JSON串转换成Map以及如何转换到对应的数据类型
bijian1013
javafastjsonnet.sf.json
在实际开发中,难免会碰到JSON串转换成Map的情况,下面来看看这方面的实例。另外,由于fastjson只支持JDK1.5及以上版本,因此在JDK1.4的项目中可以采用net.sf.json来处理。
一.fastjson实例
JsonUtil.java
package com.study;
impor
- 【RPC框架HttpInvoker一】HttpInvoker:Spring自带RPC框架
bit1129
spring
HttpInvoker是Spring原生的RPC调用框架,HttpInvoker同Burlap和Hessian一样,提供了一致的服务Exporter以及客户端的服务代理工厂Bean,这篇文章主要是复制粘贴了Hessian与Spring集成一文,【RPC框架Hessian四】Hessian与Spring集成
在
【RPC框架Hessian二】Hessian 对象序列化和反序列化一文中
- 【Mahout二】基于Mahout CBayes算法的20newsgroup的脚本分析
bit1129
Mahout
#!/bin/bash
#
# Licensed to the Apache Software Foundation (ASF) under one or more
# contributor license agreements. See the NOTICE file distributed with
# this work for additional information re
- nginx三种获取用户真实ip的方法
ronin47
随着nginx的迅速崛起,越来越多公司将apache更换成nginx. 同时也越来越多人使用nginx作为负载均衡, 并且代理前面可能还加上了CDN加速,但是随之也遇到一个问题:nginx如何获取用户的真实IP地址,如果后端是apache,请跳转到<apache获取用户真实IP地址>,如果是后端真实服务器是nginx,那么继续往下看。
实例环境: 用户IP 120.22.11.11
- java-判断二叉树是不是平衡
bylijinnan
java
参考了
http://zhedahht.blog.163.com/blog/static/25411174201142733927831/
但是用java来实现有一个问题。
由于Java无法像C那样“传递参数的地址,函数返回时能得到参数的值”,唯有新建一个辅助类:AuxClass
import ljn.help.*;
public class BalancedBTree {
- BeanUtils.copyProperties VS PropertyUtils.copyProperties
诸葛不亮
PropertyUtilsBeanUtils
BeanUtils.copyProperties VS PropertyUtils.copyProperties
作为两个bean属性copy的工具类,他们被广泛使用,同时也很容易误用,给人造成困然;比如:昨天发现同事在使用BeanUtils.copyProperties copy有integer类型属性的bean时,没有考虑到会将null转换为0,而后面的业
- [金融与信息安全]最简单的数据结构最安全
comsci
数据结构
现在最流行的数据库的数据存储文件都具有复杂的文件头格式,用操作系统的记事本软件是无法正常浏览的,这样的情况会有什么问题呢?
从信息安全的角度来看,如果我们数据库系统仅仅把这种格式的数据文件做异地备份,如果相同版本的所有数据库管理系统都同时被攻击,那么
- vi区段删除
Cwind
linuxvi区段删除
区段删除是编辑和分析一些冗长的配置文件或日志文件时比较常用的操作。简记下vi区段删除要点备忘。
vi概述
引文中并未将末行模式单独列为一种模式。单不单列并不重要,能区分命令模式与末行模式即可。
vi区段删除步骤:
1. 在末行模式下使用:set nu显示行号
非必须,随光标移动vi右下角也会显示行号,能够正确找到并记录删除开始行
- 清除tomcat缓存的方法总结
dashuaifu
tomcat缓存
用tomcat容器,大家可能会发现这样的问题,修改jsp文件后,但用IE打开 依然是以前的Jsp的页面。
出现这种现象的原因主要是tomcat缓存的原因。
解决办法如下:
在jsp文件头加上
<meta http-equiv="Expires" content="0"> <meta http-equiv="kiben&qu
- 不要盲目的在项目中使用LESS CSS
dcj3sjt126com
Webless
如果你还不知道LESS CSS是什么东西,可以看一下这篇文章,是我一朋友写给新人看的《CSS——LESS》
不可否认,LESS CSS是个强大的工具,它弥补了css没有变量、无法运算等一些“先天缺陷”,但它似乎给我一种错觉,就是为了功能而实现功能。
比如它的引用功能
?
.rounded_corners{
- [入门]更上一层楼
dcj3sjt126com
PHPyii2
更上一层楼
通篇阅读完整个“入门”部分,你就完成了一个完整 Yii 应用的创建。在此过程中你学到了如何实现一些常用功能,例如通过 HTML 表单从用户那获取数据,从数据库中获取数据并以分页形式显示。你还学到了如何通过 Gii 去自动生成代码。使用 Gii 生成代码把 Web 开发中多数繁杂的过程转化为仅仅填写几个表单就行。
本章将介绍一些有助于更好使用 Yii 的资源:
- Apache HttpClient使用详解
eksliang
httpclienthttp协议
Http协议的重要性相信不用我多说了,HttpClient相比传统JDK自带的URLConnection,增加了易用性和灵活性(具体区别,日后我们再讨论),它不仅是客户端发送Http请求变得容易,而且也方便了开发人员测试接口(基于Http协议的),即提高了开发的效率,也方便提高代码的健壮性。因此熟练掌握HttpClient是很重要的必修内容,掌握HttpClient后,相信对于Http协议的了解会
- zxing二维码扫描功能
gundumw100
androidzxing
经常要用到二维码扫描功能
现给出示例代码
import com.google.zxing.WriterException;
import com.zxing.activity.CaptureActivity;
import com.zxing.encoding.EncodingHandler;
import android.app.Activity;
import an
- 纯HTML+CSS带说明的黄色导航菜单
ini
htmlWebhtml5csshovertree
HoverTree带说明的CSS菜单:纯HTML+CSS结构链接带说明的黄色导航
在线体验效果:http://hovertree.com/texiao/css/1.htm代码如下,保存到HTML文件可以看到效果:
<!DOCTYPE html >
<html >
<head>
<title>HoverTree
- fastjson初始化对性能的影响
kane_xie
fastjson序列化
之前在项目中序列化是用thrift,性能一般,而且需要用编译器生成新的类,在序列化和反序列化的时候感觉很繁琐,因此想转到json阵营。对比了jackson,gson等框架之后,决定用fastjson,为什么呢,因为看名字感觉很快。。。
网上的说法:
fastjson 是一个性能很好的 Java 语言实现的 JSON 解析器和生成器,来自阿里巴巴的工程师开发。
- 基于Mybatis封装的增删改查实现通用自动化sql
mengqingyu
DAO
1.基于map或javaBean的增删改查可实现不写dao接口和实现类以及xml,有效的提高开发速度。
2.支持自定义注解包括主键生成、列重复验证、列名、表名等
3.支持批量插入、批量更新、批量删除
<bean id="dynamicSqlSessionTemplate" class="com.mqy.mybatis.support.Dynamic
- js控制input输入框的方法封装(数字,中文,字母,浮点数等)
qifeifei
javascript js
在项目开发的时候,经常有一些输入框,控制输入的格式,而不是等输入好了再去检查格式,格式错了就报错,体验不好。 /** 数字,中文,字母,浮点数(+/-/.) 类型输入限制,只要在input标签上加上 jInput="number,chinese,alphabet,floating" 备注:floating属性只能单独用*/
funct
- java 计时器应用
tangqi609567707
javatimer
mport java.util.TimerTask; import java.util.Calendar; public class MyTask extends TimerTask { private static final int
- erlang输出调用栈信息
wudixiaotie
erlang
在erlang otp的开发中,如果调用第三方的应用,会有有些错误会不打印栈信息,因为有可能第三方应用会catch然后输出自己的错误信息,所以对排查bug有很大的阻碍,这样就要求我们自己打印调用的栈信息。用这个函数:erlang:process_display (self (), backtrace).需要注意这个函数只会输出到标准错误输出。
也可以用这个函数:erlang:get_s