- Redis 安装详细教程(小白版)
小小鸭程序员
springjavaAI编程springcloudredis
一、Windows系统安装Redis方法1:直接安装(推荐新手)下载RedisforWindows访问微软维护的Redis版本:https://github.com/microsoftarchive/redis/releases下载Redis-x64-3.2.100.msi(或最新版本)安装包。安装Redis双击下载的.msi文件点击下一步,勾选“AddRedisinstallationfolde
- Hive SQL 精进系列:REGEXP_REPLACE 函数的用法
进一步有进一步的欢喜
HiveSQL精进系列hivesqlhadoop
目录一、引言二、REGEXP_REPLACE函数基础2.1基本语法参数详解2.2简单示例三、REGEXP_REPLACE函数的应用场景3.1去除特殊字符3.2统一字符串格式四、REGEXP_REPLACE与REPLACE函数的对比4.1功能差异4.2适用场景五、REGEXP_REPLACE与REGEXP函数的对比5.1功能差异5.2适用场景六、总结一、引言字符串处理是数据处理中的常见需求,Hive
- Hive SQL 精进系列:SUBSTR 函数的多样用法
进一步有进一步的欢喜
HiveSQL精进系列hivesqlhadoop
目录一、引言二、SUBSTR函数基础介绍2.1基本语法2.2参数详解2.3简单示例三、SUBSTR函数常见应用场景3.1提取日期中的年份、月份或日期3.2隐藏部分敏感信息四、SUBSTR函数高级用法4.1结合条件判断动态截取4.2处理复杂字符串模式五、总结一、引言SUBSTR函数是HiveSQL中一个用于字符串截取的重要函数,在处理文本数据时发挥着关键作用。本文将全面且深入地介绍HiveSQL中S
- Hive----Hive进阶操作(三) HIVE 特殊分隔符处理
XiaodunLP
Hive
HIVE特殊分隔符处理补充:hive读取数据的机制:1、首先用InputFormat的一个具体实现类读入文件数据,返回一条一条的记录(可以是行,或者是你逻辑中的“行”)2、然后利用SerDe的一个具体实现类,对上面返回的一条一条的记录进行字段切割Hive对文件中字段的分隔符默认情况下只支持单字节分隔符,如果数据文件中的分隔符是多字符的,如下所示:01||huangbo02||xuzheng03||
- hive-进阶版-1
数据牧马人
hivehadoop数据仓库
第6章hive内部表与外部表的区别Hive是一个基于Hadoop的数据仓库工具,用于对大规模数据集进行数据存储、查询和分析。Hive支持内部表(ManagedTable)和外部表(ExternalTable)两种表类型,它们在数据存储、管理方式和生命周期等方面存在显著区别。以下是内部表和外部表的主要区别:1.数据存储位置内部表:数据存储在Hive的默认存储目录下,通常位于HDFS(HadoopDi
- NVIDIA下载老版本驱动/CUDA/Video Codec SDK的链接,以及一些解码参数说明
landihao
linux
NVIDIA下载老版本驱动/CUDA/VideoCodecSDK的链接从别的网站抄过来的CUDA:https://developer.nvidia.com/cuda-toolkit-archive老驱动:https://www.nvidia.cn/geforce/drivers/VideoCodecSDKhttps://developer.nvidia.com/video-codec-sdk-ar
- hive split 函数转义问题
进一步有进一步的欢喜
HiveSQL精进系列大数据
语法split(strstring,regexstring)--使用regex分割字符串str基本用法selectsplit('a,b,c,d',',')fromtemp_cwh_test;--分割--结果为数组>["a","b","c","d"]截取字符串中某个值selectsplit('a,b,c,d',',')[0]fromtemp_cwh_test;--提取第1个值>a特殊字符的处理针对特
- Hive SQL 精进系列:解锁 Hive SQL 中 KeyValue 函数的强大功能
进一步有进一步的欢喜
HiveSQL精进系列hivesqlhadoop
目录一、引言二、KeyValue函数基础2.1语法结构详解形式一:`keyvalue(string,[string,string,]string)`形式二:`keyvalue(string,string)`2.2参数详解2.3返回值规则三、丰富的应用场景3.1解析学生成绩信息3.2处理员工考勤数据3.3分析网站访问参数3.4提取设备配置信息四、使用注意事项4.1分隔符的准确性4.2空值处理4.3多
- 大数据手册(Spark)--Spark安装配置
WilenWu
数据分析(DataAnalysis)大数据spark分布式
本文默认在zsh终端安装配置,若使用bash终端,环境变量的配置文件相应变化。若安装包下载缓慢,可复制链接到迅雷下载,亲测极速~准备工作Spark的安装过程较为简单,在已安装好Hadoop的前提下,经过简单配置即可使用。假设已经安装好了hadoop(伪分布式)和hive,环境变量如下JAVA_HOME=/usr/opt/jdkHADOOP_HOME=/usr/local/hadoopHIVE_HO
- 关于stable diffusion的lora训练在linux远程工作站的部署
回天一梦
stablediffusionpython经验分享
在学校Arc中部署loratraining,一大问题就是依赖缺失和冲突。可以利用miniconda或者anaconda建立虚拟环境来解决。安装anaconda或者miniconda(官网上也有教程):wgethttps://repo.anaconda.com/archive/Anaconda3-5.3.0-Linux-x86_64.shchmod+xAnaconda3-5.3.0-Linux-x8
- Hive SQL 精进系列:一行变多行的 LATERAL VIEW EXPLODE
进一步有进一步的欢喜
HiveSQL精进系列hivesqlhadoop
目录一、引言二、`LATERALVIEWEXPLODE`概述2.1基本概念2.2单词解析2.2.1`LATERAL`2.2.2`VIEW`2.2.3`EXPLODE`三、语法详解3.1基本语法结构3.2完整语法示例(针对映射情况)四、使用场景4.1数组数据展开4.2映射数据展开五、案例分析5.1展开数组示例5.1.1数据准备5.1.2使用`LATERALVIEWEXPLODE`展开数组5.1.3结
- sql获取某列出现频次最多的值_业务硬核SQL集锦
金渡江
sql获取某列出现频次最多的值
戳上方蓝字关注我这两年学会了跑sql,当时有很多同学帮助我精进了这个技能,现在也写成一个小教程,反馈给大家。适用对象:工作中能接触到sql查询平台的业务同学(例如有数据查询权限的产品与运营同学)适用场景:查询hive&mysql上的数据文档优势:比起各类从零起步的教程教材,理解门槛低,有效信息密度大,可以覆盖高频业务场景。文末有一些常见的小技巧,希望帮助同学们提升工作效率。SQL的基础结构:做一个
- Hive SQL 精进系列: JSON_TUPLE 快速提取多键值
进一步有进一步的欢喜
HiveSQL精进系列hivesqlhadoop
目录一、引言二、json_tuple函数基础2.1基本语法参数解释返回值简单示例三、应用场景3.1数据提取与分析3.2数据集成与转换3.3复杂JSON数据处理四、json_tuple、get_json_object和from_json的对比4.1功能特点4.2语法和使用复杂度4.3性能表现4.4示例对比使用json_tuple使用get_json_object使用from_json五、使用注意事项
- hive sql报错
进一步有进一步的欢喜
大数据HiveSQL精进系列
1.hivesql报错FAILED:ParseExceptionline22:0cannotrecognizeinputnear''''''insubquerysource2.解决select*from(select...fromtable_1where...)table_outer嵌套的内层的表一定要有别名,也就是示例代码中的表名table_outer。
- HIVE开窗函数
Cciccd
sqlhive
ETL,SQL面试高频考点——HIVE开窗函数(基础篇)目录标题ETL,SQL面试高频考点——HIVE开窗函数(基础篇)一,窗口函数介绍二,开窗函数三,分析函数分类1,排序分析函数:实列解析对比总结2.聚合分析函数3.用spark自定义HIVE用户自定义函数后续更新中~一,窗口函数介绍窗口函数,也叫OLAP函数(OnlineAnallyticalProcessing,联机分析处理),可以对数据库数
- hive开窗函数总结
weixin_46134848
大数据hivemysql
文章目录概要整体架构流程示例1示例2小结概要hive开窗函数总结整体架构流程1.窗口函数的基本用法函数名()over()over关键字来指定函数执行的范围,包含三个分析子句:分组(partitionby)子句,排序(orderby)子句,窗口(rows)子句函数名(字段名)over(partitionbyorderbyrowsbetween)窗口大小可以通过rowsbetween…and…来限定,
- Hive MR & Spark & Yarn参数优化总结
大数据侠客
hive相关问题汇总及解决hivesparkmryarn参数优化
一、hivemr参数调优:sethive.optimize.ppd=true;--开启谓词下推。--动态分区参数sethive.exec.mode.local.auto=true;sethive.exec.dynamic.partition.mode=nonstrict;--默认是strict,表示至少有一个静态分区,nonstri
- hive 中优化性能的一些方法
闯闯桑
hivehadoop数据仓库
在ApacheHive中,性能优化是一个重要的课题,尤其是在处理大规模数据时。通过合理的优化方法,可以显著提升查询速度和资源利用率。以下是一些常见的Hive性能优化方法:1.数据存储优化1.1使用列式存储格式推荐格式:ORC和Parquet。优点:列式存储格式具有更高的压缩率和查询性能。支持谓词下推(PredicatePushdown)和列裁剪(ColumnPruning)。示例:CREATETA
- 虚拟机中Hadoop集群NameNode进程缺失问题解析与解决
申朝先生
hadoop大数据分布式linux
目录问题概述问题分析解决办法总结问题概述在虚拟机中运行Hadoop集群时,通过执行jps命令检查进程时,发现NameNode进程缺失。这通常会导致Hadoop集群无法正常运行,影响数据的存储和访问。问题分析导致NameNode进程缺失的原因可能有以下几点:集群未正确停止:在关闭虚拟机或重启Hadoop集群之前,未执行stop-all.sh命令正确停止集群,导致Hadoop服务异常退出,留下残留数据
- 使用 Doris 和 Iceberg
向阳1218
大数据doris
作为一种全新的开放式的数据管理架构,湖仓一体(DataLakehouse)融合了数据仓库的高性能、实时性以及数据湖的低成本、灵活性等优势,帮助用户更加便捷地满足各种数据处理分析的需求,在企业的大数据体系中已经得到越来越多的应用。在过去多个版本中,ApacheDoris持续加深与数据湖的融合,当前已演进出一套成熟的湖仓一体解决方案。自0.15版本起,ApacheDoris引入Hive和Iceberg
- 使用 Doris 和 LakeSoul
向阳1218
大数据doris
作为一种全新的开放式的数据管理架构,湖仓一体(DataLakehouse)融合了数据仓库的高性能、实时性以及数据湖的低成本、灵活性等优势,帮助用户更加便捷地满足各种数据处理分析的需求,在企业的大数据体系中已经得到越来越多的应用。在过去多个版本中,ApacheDoris持续加深与数据湖的融合,当前已演进出一套成熟的湖仓一体解决方案。自0.15版本起,ApacheDoris引入Hive和Iceberg
- doris:Hudi Catalog
向阳1218
大数据doris
使用限制Hudi表支持的查询类型如下:表类型支持的查询类型CopyOnWriteSnapshotQuery,TimeTravel,IcrementalReadMergeOnReadSnapshotQueries,ReadOptimizedQueries,TimeTravel,IcrementalRead目前支持HiveMetastore和兼容HiveMetastore类型(例如AWSGlue/Al
- 为什么要进行数据仓库分层?
BenBen尔
#建模方法spark大数据分布式
对数据仓库进行分层(如常见的ODS、DWD、DWS、ADS等层次)是为了解决复杂数据处理场景中的效率、可维护性、易用性问题。以下是分层的主要目的和优势:1、职责分离,逻辑解耦分层能够沉淀公共的数据模型,实现了逻辑解耦。有以下好处:减少重复开发,提升研发效率从数仓模型角度能够提升数据一致性。减少了冗余计算,高频查询或者高频开发无需使用原始数据,直接使用公共的数据模型查询或者开发即可,减少了对计算资源
- 大数据学习(67)- Flume、Sqoop、Kafka、DataX对比
viperrrrrrr
大数据学习flumekafkasqoopdatax
大数据学习系列专栏:哲学语录:用力所能及,改变世界。如果觉得博主的文章还不错的话,请点赞+收藏⭐️+留言支持一下博主哦工具主要作用数据流向实时性数据源/目标应用场景Flume实时日志采集与传输从数据源到存储系统实时日志文件、网络流量等→HDFS、HBase、Kafka等日志收集、实时监控、实时分析Sqoop关系型数据库与Hadoop间数据同步关系型数据库→Hadoop生态系统(HDFS、Hive、
- 数据仓库有哪些建模方法?
BenBen尔
#数据仓库数据仓库大数据
数据仓库的建模方法主要分为关系建模和多维建模两大类,不同方法适用于不同的业务场景和目标。以下是常见的建模方法及其特点:一、关系建模(规范化建模)基于关系型数据库的规范化理论,强调减少数据冗余,适合复杂的企业级数据仓库(EDW)。第三范式(3NF)定义:通过规范化将数据分解为多个关联表,确保每个字段仅依赖主键。优点:数据冗余低,一致性高,适合复杂事务处理。缺点:查询需要多表关联,性能较低;业务理解成
- Kubernetes集群版本升级
程序员Realeo
Java后端kubernetes容器云原生
集群升级注意事项升级集群版本建议逐步升级,比如v1.20.1–>v1.21.1–>v1.22.1–>v1.23.1–>v1.24.1,不能跨度过大,否则会报错。升级步骤查看集群版本[root@hadoop102~]#kubectlgetnodesNAMESTATUSROLESAGEVERSIONhadoop102Ready,SchedulingDisabledcontrol-plane,maste
- Different number of columns
sunyaox
flinkflink异常
org.apache.flink.client.program.ProgramInvocationException:Themainmethodcausedanerror:Columntypesofqueryresultandsinkforregisteredtable‘photoTradeInfoHive.db_audit.ods_photo_trade’donotmatch.Cause:Dif
- 现代数据栈:秽土重生?——从 SAP x Databricks 看数据世界的轮回
数据库
由SAP官宣与Databricks合作想开去。现代数据栈(ModernDataStack)曾一度是数据行业最炙手可热的概念。Snowflake、Databricks、Fivetran、dbt……一众明星公司描绘出一个美好的未来:所有数据汇集到云端数据仓库,所有分析、BI和AI应用直接连接仓库数据,再无数据孤岛,数据流转自由,一切井然有序。但现实并没有这么美好。现代数据栈经历了一轮狂热,又在短短几年
- doris:SQL 方言兼容
向阳1218
大数据doris
提示从2.1版本开始,Doris可以支持多种SQL方言,如Presto、Trino、Hive、PostgreSQL、Spark、Clickhouse等等。通过这个功能,用户可以直接使用对应的SQL方言查询Doris中的数据,方便用户将原先的业务平滑的迁移到Doris中。警告该功能目前是实验性功能,您在使用过程中如遇到任何问题,欢迎通过邮件组、GitHubIssue等方式进行反馈。部署服务下载最新版
- Linux 让PHP支持MSSQL
hello_simon
phplinux
FreeTDS官方网站:http://www.freetds.org当前版本0.82wgethttp://mirrors.xmu.edu.cn/ubuntu/archive/pool/main/f/freetds/freetds_0.82.orig.tar.gz1.编译FreeTDS#tarzxvffreetds-0.82.tar.gz#cdfreetds-0.82//--with-tdsver=
- jvm调优总结(从基本概念 到 深度优化)
oloz
javajvmjdk虚拟机应用服务器
JVM参数详解:http://www.cnblogs.com/redcreen/archive/2011/05/04/2037057.html
Java虚拟机中,数据类型可以分为两类:基本类型和引用类型。基本类型的变量保存原始值,即:他代表的值就是数值本身;而引用类型的变量保存引用值。“引用值”代表了某个对象的引用,而不是对象本身,对象本身存放在这个引用值所表示的地址的位置。
- 【Scala十六】Scala核心十:柯里化函数
bit1129
scala
本篇文章重点说明什么是函数柯里化,这个语法现象的背后动机是什么,有什么样的应用场景,以及与部分应用函数(Partial Applied Function)之间的联系 1. 什么是柯里化函数
A way to write functions with multiple parameter lists. For instance
def f(x: Int)(y: Int) is a
- HashMap
dalan_123
java
HashMap在java中对很多人来说都是熟的;基于hash表的map接口的非同步实现。允许使用null和null键;同时不能保证元素的顺序;也就是从来都不保证其中的元素的顺序恒久不变。
1、数据结构
在java中,最基本的数据结构无外乎:数组 和 引用(指针),所有的数据结构都可以用这两个来构造,HashMap也不例外,归根到底HashMap就是一个链表散列的数据
- Java Swing如何实时刷新JTextArea,以显示刚才加append的内容
周凡杨
java更新swingJTextArea
在代码中执行完textArea.append("message")后,如果你想让这个更新立刻显示在界面上而不是等swing的主线程返回后刷新,我们一般会在该语句后调用textArea.invalidate()和textArea.repaint()。
问题是这个方法并不能有任何效果,textArea的内容没有任何变化,这或许是swing的一个bug,有一个笨拙的办法可以实现
- servlet或struts的Action处理ajax请求
g21121
servlet
其实处理ajax的请求非常简单,直接看代码就行了:
//如果用的是struts
//HttpServletResponse response = ServletActionContext.getResponse();
// 设置输出为文字流
response.setContentType("text/plain");
// 设置字符集
res
- FineReport的公式编辑框的语法简介
老A不折腾
finereport公式总结
FINEREPORT用到公式的地方非常多,单元格(以=开头的便被解析为公式),条件显示,数据字典,报表填报属性值定义,图表标题,轴定义,页眉页脚,甚至单元格的其他属性中的鼠标悬浮提示内容都可以写公式。
简单的说下自己感觉的公式要注意的几个地方:
1.if语句语法刚接触感觉比较奇怪,if(条件式子,值1,值2),if可以嵌套,if(条件式子1,值1,if(条件式子2,值2,值3)
- linux mysql 数据库乱码的解决办法
墙头上一根草
linuxmysql数据库乱码
linux 上mysql数据库区分大小写的配置
lower_case_table_names=1 1-不区分大小写 0-区分大小写
修改/etc/my.cnf 具体的修改内容如下:
[client]
default-character-set=utf8
[mysqld]
datadir=/var/lib/mysql
socket=/va
- 我的spring学习笔记6-ApplicationContext实例化的参数兼容思想
aijuans
Spring 3
ApplicationContext能读取多个Bean定义文件,方法是:
ApplicationContext appContext = new ClassPathXmlApplicationContext(
new String[]{“bean-config1.xml”,“bean-config2.xml”,“bean-config3.xml”,“bean-config4.xml
- mysql 基准测试之sysbench
annan211
基准测试mysql基准测试MySQL测试sysbench
1 执行如下命令,安装sysbench-0.5:
tar xzvf sysbench-0.5.tar.gz
cd sysbench-0.5
chmod +x autogen.sh
./autogen.sh
./configure --with-mysql --with-mysql-includes=/usr/local/mysql
- sql的复杂查询使用案列与技巧
百合不是茶
oraclesql函数数据分页合并查询
本片博客使用的数据库表是oracle中的scott用户表;
------------------- 自然连接查询
查询 smith 的上司(两种方法)
&
- 深入学习Thread类
bijian1013
javathread多线程java多线程
一. 线程的名字
下面来看一下Thread类的name属性,它的类型是String。它其实就是线程的名字。在Thread类中,有String getName()和void setName(String)两个方法用来设置和获取这个属性的值。
同时,Thr
- JSON串转换成Map以及如何转换到对应的数据类型
bijian1013
javafastjsonnet.sf.json
在实际开发中,难免会碰到JSON串转换成Map的情况,下面来看看这方面的实例。另外,由于fastjson只支持JDK1.5及以上版本,因此在JDK1.4的项目中可以采用net.sf.json来处理。
一.fastjson实例
JsonUtil.java
package com.study;
impor
- 【RPC框架HttpInvoker一】HttpInvoker:Spring自带RPC框架
bit1129
spring
HttpInvoker是Spring原生的RPC调用框架,HttpInvoker同Burlap和Hessian一样,提供了一致的服务Exporter以及客户端的服务代理工厂Bean,这篇文章主要是复制粘贴了Hessian与Spring集成一文,【RPC框架Hessian四】Hessian与Spring集成
在
【RPC框架Hessian二】Hessian 对象序列化和反序列化一文中
- 【Mahout二】基于Mahout CBayes算法的20newsgroup的脚本分析
bit1129
Mahout
#!/bin/bash
#
# Licensed to the Apache Software Foundation (ASF) under one or more
# contributor license agreements. See the NOTICE file distributed with
# this work for additional information re
- nginx三种获取用户真实ip的方法
ronin47
随着nginx的迅速崛起,越来越多公司将apache更换成nginx. 同时也越来越多人使用nginx作为负载均衡, 并且代理前面可能还加上了CDN加速,但是随之也遇到一个问题:nginx如何获取用户的真实IP地址,如果后端是apache,请跳转到<apache获取用户真实IP地址>,如果是后端真实服务器是nginx,那么继续往下看。
实例环境: 用户IP 120.22.11.11
- java-判断二叉树是不是平衡
bylijinnan
java
参考了
http://zhedahht.blog.163.com/blog/static/25411174201142733927831/
但是用java来实现有一个问题。
由于Java无法像C那样“传递参数的地址,函数返回时能得到参数的值”,唯有新建一个辅助类:AuxClass
import ljn.help.*;
public class BalancedBTree {
- BeanUtils.copyProperties VS PropertyUtils.copyProperties
诸葛不亮
PropertyUtilsBeanUtils
BeanUtils.copyProperties VS PropertyUtils.copyProperties
作为两个bean属性copy的工具类,他们被广泛使用,同时也很容易误用,给人造成困然;比如:昨天发现同事在使用BeanUtils.copyProperties copy有integer类型属性的bean时,没有考虑到会将null转换为0,而后面的业
- [金融与信息安全]最简单的数据结构最安全
comsci
数据结构
现在最流行的数据库的数据存储文件都具有复杂的文件头格式,用操作系统的记事本软件是无法正常浏览的,这样的情况会有什么问题呢?
从信息安全的角度来看,如果我们数据库系统仅仅把这种格式的数据文件做异地备份,如果相同版本的所有数据库管理系统都同时被攻击,那么
- vi区段删除
Cwind
linuxvi区段删除
区段删除是编辑和分析一些冗长的配置文件或日志文件时比较常用的操作。简记下vi区段删除要点备忘。
vi概述
引文中并未将末行模式单独列为一种模式。单不单列并不重要,能区分命令模式与末行模式即可。
vi区段删除步骤:
1. 在末行模式下使用:set nu显示行号
非必须,随光标移动vi右下角也会显示行号,能够正确找到并记录删除开始行
- 清除tomcat缓存的方法总结
dashuaifu
tomcat缓存
用tomcat容器,大家可能会发现这样的问题,修改jsp文件后,但用IE打开 依然是以前的Jsp的页面。
出现这种现象的原因主要是tomcat缓存的原因。
解决办法如下:
在jsp文件头加上
<meta http-equiv="Expires" content="0"> <meta http-equiv="kiben&qu
- 不要盲目的在项目中使用LESS CSS
dcj3sjt126com
Webless
如果你还不知道LESS CSS是什么东西,可以看一下这篇文章,是我一朋友写给新人看的《CSS——LESS》
不可否认,LESS CSS是个强大的工具,它弥补了css没有变量、无法运算等一些“先天缺陷”,但它似乎给我一种错觉,就是为了功能而实现功能。
比如它的引用功能
?
.rounded_corners{
- [入门]更上一层楼
dcj3sjt126com
PHPyii2
更上一层楼
通篇阅读完整个“入门”部分,你就完成了一个完整 Yii 应用的创建。在此过程中你学到了如何实现一些常用功能,例如通过 HTML 表单从用户那获取数据,从数据库中获取数据并以分页形式显示。你还学到了如何通过 Gii 去自动生成代码。使用 Gii 生成代码把 Web 开发中多数繁杂的过程转化为仅仅填写几个表单就行。
本章将介绍一些有助于更好使用 Yii 的资源:
- Apache HttpClient使用详解
eksliang
httpclienthttp协议
Http协议的重要性相信不用我多说了,HttpClient相比传统JDK自带的URLConnection,增加了易用性和灵活性(具体区别,日后我们再讨论),它不仅是客户端发送Http请求变得容易,而且也方便了开发人员测试接口(基于Http协议的),即提高了开发的效率,也方便提高代码的健壮性。因此熟练掌握HttpClient是很重要的必修内容,掌握HttpClient后,相信对于Http协议的了解会
- zxing二维码扫描功能
gundumw100
androidzxing
经常要用到二维码扫描功能
现给出示例代码
import com.google.zxing.WriterException;
import com.zxing.activity.CaptureActivity;
import com.zxing.encoding.EncodingHandler;
import android.app.Activity;
import an
- 纯HTML+CSS带说明的黄色导航菜单
ini
htmlWebhtml5csshovertree
HoverTree带说明的CSS菜单:纯HTML+CSS结构链接带说明的黄色导航
在线体验效果:http://hovertree.com/texiao/css/1.htm代码如下,保存到HTML文件可以看到效果:
<!DOCTYPE html >
<html >
<head>
<title>HoverTree
- fastjson初始化对性能的影响
kane_xie
fastjson序列化
之前在项目中序列化是用thrift,性能一般,而且需要用编译器生成新的类,在序列化和反序列化的时候感觉很繁琐,因此想转到json阵营。对比了jackson,gson等框架之后,决定用fastjson,为什么呢,因为看名字感觉很快。。。
网上的说法:
fastjson 是一个性能很好的 Java 语言实现的 JSON 解析器和生成器,来自阿里巴巴的工程师开发。
- 基于Mybatis封装的增删改查实现通用自动化sql
mengqingyu
DAO
1.基于map或javaBean的增删改查可实现不写dao接口和实现类以及xml,有效的提高开发速度。
2.支持自定义注解包括主键生成、列重复验证、列名、表名等
3.支持批量插入、批量更新、批量删除
<bean id="dynamicSqlSessionTemplate" class="com.mqy.mybatis.support.Dynamic
- js控制input输入框的方法封装(数字,中文,字母,浮点数等)
qifeifei
javascript js
在项目开发的时候,经常有一些输入框,控制输入的格式,而不是等输入好了再去检查格式,格式错了就报错,体验不好。 /** 数字,中文,字母,浮点数(+/-/.) 类型输入限制,只要在input标签上加上 jInput="number,chinese,alphabet,floating" 备注:floating属性只能单独用*/
funct
- java 计时器应用
tangqi609567707
javatimer
mport java.util.TimerTask; import java.util.Calendar; public class MyTask extends TimerTask { private static final int
- erlang输出调用栈信息
wudixiaotie
erlang
在erlang otp的开发中,如果调用第三方的应用,会有有些错误会不打印栈信息,因为有可能第三方应用会catch然后输出自己的错误信息,所以对排查bug有很大的阻碍,这样就要求我们自己打印调用的栈信息。用这个函数:erlang:process_display (self (), backtrace).需要注意这个函数只会输出到标准错误输出。
也可以用这个函数:erlang:get_s