- 《Python 基础知识点解析--01》
青柠小卖部
python开发语言
在编程的世界里,Python以其简洁易懂的语法和强大的功能受到了广大开发者的喜爱。本文将为您详细介绍Python基础中的一些重要知识点。一、注释的作用与分类注释在代码中起着至关重要的作用,它可以帮助开发者更好地理解代码的功能和逻辑。单行注释:以#开头,其后的内容为注释。例如:#这是一个单行注释多行注释:使用三个单引号'''或三个双引号"""包裹注释内容。例如:'''这是一个多行注释'''注释可以用
- 使用numpy自定义数据集 使用tensorflow框架实现逻辑回归并保存模型,然后保存模型后再加载模型进行预
辞落山
numpytensorflow逻辑回归
1.引言逻辑回归(LogisticRegression)是一种常见的分类算法,广泛应用于二分类问题。在本篇博客中,我们将使用numpy生成一个简单的自定义数据集,并使用TensorFlow框架构建和训练逻辑回归模型。训练完成后,我们会保存模型,并演示如何加载保存的模型进行预测。2.创建自定义数据集首先,我们使用numpy生成一个简单的二分类数据集,包含两个特征和对应的标签。标签0表示负类,标签1表
- 分类算法:梯度提升树(GBT)算法原理
kkchenjj
数据挖掘机器学习算法分类数据挖掘
分类算法:梯度提升树(GBT)算法原理1.简介1.1梯度提升树的起源与发展梯度提升树(GradientBoostingTree,GBT)是一种强大的机器学习算法,它基于提升方法的原理,通过迭代地构建一系列弱分类器并组合它们来形成一个强分类器。GBT的起源可以追溯到Freund和Schapire在1996年提出的AdaBoost算法,但真正将梯度提升应用于树模型的是JeromeH.Friedman在
- 梯度提升用于高效的分类与回归
纠结哥_Shrek
分类回归数据挖掘
使用决策树(DecisionTree)实现梯度提升(GradientBoosting)主要是模拟GBDT(GradientBoostingDecisionTrees)的原理,即:第一棵树拟合原始数据计算残差(负梯度方向)用新的树去拟合残差累加所有树的预测值重复步骤2-4,直至达到指定轮数下面是一个纯Python+PyTorch实现GBDT(梯度提升决策树)的代码示例。1.纯Python实现梯度提升
- 外部网关路由协议-----BGP
bugggggggg
外部网关路由协议bgp
文章目录一、BGP定义1.1、概述1.2、特点1.3、分类1.4、工作原理1、五种报文2、六种状态机3、九个原则1.5、如何建立对等体1.6、相关配置二、实验三、BGP选路3.1、路径属性3.2、BGP选路原则一、BGP定义边界网关协议(BGP)是运行于TCP上的一种自治系统的路由协议。BGP是唯一一个用来处理像因特网大小的网络的协议,也是唯一能够妥善处理好不相关路由域间的多路连接的协议。BGP构
- TensorBoard可视化工具支持哪些类型的图表?
alankuo
人工智能
TensorBoard支持多种类型的图表,以下是详细介绍:标量图(Scalars)定义与用途:用于展示单个数值随时间(通常是训练步骤或迭代次数)的变化情况。在深度学习模型训练中,最常见的是损失函数值和评估指标(如准确率、精确率、召回率等)的变化曲线。示例:例如,在训练一个图像分类模型时,记录训练集和测试集上的损失函数值。通过标量图,可以直观地看到随着训练轮次(epochs)的增加,损失函数值是如何
- 《攻克语言密码:教AI理解隐喻与象征》
程序猿阿伟
人工智能
在自然语言处理(NLP)领域,让计算机理解人类语言中的隐喻和象征,是迈向更高语言理解水平的关键一步。从“时间就是金钱”这样的概念隐喻,到文学作品里象征着坚韧的“寒梅”,这些非字面意义的表达方式承载着丰富的情感与文化内涵。然而,对于基于规则和数据驱动的NLP模型来说,理解隐喻和象征一直是块难啃的硬骨头。理解隐喻与象征:人类语言的独特魅力隐喻和象征作为常见的修辞手法,为语言表达增添了生动性与深度。隐喻
- 基于最近邻数据进行分类
纠结哥_Shrek
分类数据挖掘人工智能
完整代码:importtorchimportnumpyasnpfromsklearn.neighborsimportKNeighborsClassifierfromsklearn.metricsimportaccuracy_scoreimportmatplotlib.pyplotasplt#生成一个简单的数据集(2个特征和2个分类)#X为输入特征,y为标签X=np.array([[1,2],[2,
- 编程语言发展史之:编程语言的未来趋势
AI天才研究院
AI大模型企业级应用开发实战大数据人工智能语言模型JavaPython架构设计
作者:禅与计算机程序设计艺术文章目录1.简介概述计算编程语言发展的主要里程碑2.编程语言的历史2.1编程语言的出现2.2第一代编程语言——FORTRAN2.3第二代编程语言——COBOL2.4第三代编程语言——PASCAL2.5第四代编程语言——C++、Java、C#、Python、Ruby等2.6模块化编程语言2.7跨平台语言2.8编程语言的分类3.编程语言的发展阶段及其性质编程语言的发展阶段及
- 【SLAM】SLAM技术详解:同步定位与地图构建
steamedobun
计算机视觉SLAM深度学习人工智能目标检测机器学习
引言在机器人技术、自动驾驶、增强现实(AR)和无人机等前沿领域,SLAM(SimultaneousLocalizationandMapping)技术扮演着至关重要的角色。SLAM,即同时定位与地图构建,是一种通过传感器数据实时估计机器人或无人系统自身位置并构建环境地图的技术。本文将详细介绍SLAM技术的原理、应用场景、分类及其优缺点,并对SLAM技术的未来发展进行展望。SLAM技术概述定义与原理S
- AI 大模型创业:如何利用商业优势?
AI天才研究院
大数据AI人工智能ChatGPTjavapythonjavascriptkotlingolang架构人工智能大厂程序员硅基计算碳基计算认知计算生物计算深度学习神经网络大数据AIGCAGILLM系统架构设计软件哲学Agent程序员实现财富自由
第1章:AI大模型概述1.1AI大模型的概念与演进AI大模型(Large-scaleArtificialIntelligenceModels)是指通过大规模数据训练得到的复杂神经网络模型。这些模型通常具有数十亿甚至千亿个参数,能够实现从自然语言处理到计算机视觉、语音识别等广泛领域的任务。AI大模型的概念起源于20世纪80年代,当时研究人员提出了深度学习(DeepLearning)这一概念。深度学习
- 平台经济事前治理的国际经验和中国路径
罗伯特之技术屋
人工智能与智能系统专栏大数据人工智能
摘要:平台经济事前治理已成为全球关注焦点,中国探索平台经济事前治理具有深刻的政策、现实和理论需求。以欧盟和美国为代表的全球平台经济治理,在平台的市场势力、平台势力、数字守门人等理论发展驱动下,经历了放松监管、平台反垄断和事前监管的治理导向演化。当前,欧盟和美国正探索平台作为服务者和竞争者的事前监管,在监管对象、监管规则和处罚方式等维度开展创新,在治理立场、监管框架、分类施策、关注焦点等关键方面形成
- 语言模型与向量模型:深入解析与实例剖析
♢.*
语言模型人工智能自然语言处理
亲爱的小伙伴们,在求知的漫漫旅途中,若你对深度学习的奥秘、Java与Python的奇妙世界,亦或是读研论文的撰写攻略有所探寻,那不妨给我一个小小的关注吧。我会精心筹备,在未来的日子里不定期地为大家呈上这些领域的知识宝藏与实用经验分享。每一个点赞,都如同春日里的一缕阳光,给予我满满的动力与温暖,让我们在学习成长的道路上相伴而行,共同进步✨。期待你的关注与点赞哟!在自然语言处理领域,语言模型和向量模型
- 「焦虑永存」悖论:一个自媒体人的两年通关实录
小路哥v
副业思考经验分享
在一个没有阳光的晚上,打开灯望着电脑不知道写什么,于是无聊的整理起flomo上以前写过的内容,标签太乱,边看边整理,重新分类打标签。随着一篇篇整理,看着那些用文字描写着当时的心境,我被带入到了2022年,2023年上半年,原来我当时在经历这些事情,在做这些事情。原来我当时是这样思考问题的,原来我当时同样很焦虑,不知道做什么,只能一遍一遍的尝试,一遍又一遍的探索新的东西。也同样面临看到同行的其他人一
- 【C语言】运算符优先级全面解析
雷神 Leo
经验分享类#C语言c语言
目录前言运算符优先级概述运算符分类与优先级列表运算符优先级的实际应用示例1:乘法和加法的优先级示例2:使用括号改变运算顺序示例3:赋值运算符的优先级示例4:逻辑运算符的优先级总结前言C语言作为编程世界中的一颗常青树,其精确的语法规则和运算符优先级对于编写高效、可读性强的代码至关重要。运算符优先级决定了表达式中运算的顺序,而正确的理解这一概念对于避免潜在的逻辑错误和提高代码质量具有重要意义。本文将详
- 软件体系结构——基于事件的隐式调用风格
阴天快乐、、
软件体系结构Java
基于事件的隐式调用风格的基本组件是对象或过程,并分类为以下更小的组件:过程或函数。充当事件源或事件处理器的角色。连接件是事件-过程绑定。组件可以声明或广播一个或多个事件,或者向系统注册,来表明他希望响应一个或多个事件。当某些事件被触发时,向其注册的过程被隐式调用,调用的次序是不确定的。程序示例如下:【功能】:点击窗口程序使显示的文字发生改变。importjava.awt.*;importjava.
- Python 库的记录
weixin_40895135
python
GitHub-jobbole/awesome-python-cn:Python资源大全中文版,内容包括:Web框架、网络爬虫、网络内容提取、模板引擎、数据库、数据可视化、图片处理、文本处理、自然语言处理、机器学习、日志、代码分析等环境管理管理Python版本和环境的工具p–非常简单的交互式python版本管理工具。pyenv–简单的Python版本管理工具。Vex–可以在虚拟环境中执行命令。vir
- 词表设计:特殊Token区域与共享去区域的深入探讨
东方佑
开发语言
在自然语言处理(NLP)中,Tokenizer的设计对于模型性能有着至关重要的影响。Tokenizer不仅决定了文本如何被分割成更小的单位(即token),还决定了这些token如何被映射到模型可以理解的形式。本文将详细探讨一种特殊的Tokenizer设计方法——特殊Token区域与共享去区域的设计理念,并介绍其应用场景和实现方式。特殊Token区域概述特殊Token区域通常包括一些特定的标识符,
- Synthesia技术浅析(四):自然语言处理
爱研究的小牛
AIGC—视频AIGC—虚拟现实AIGC—自然语言处理自然语言处理人工智能AIGC
Synthesia的自然语言处理(NLP)模块是其核心技术之一,涵盖了文本转语音(TTS)、情感分析以及多语言支持等多个方面。一、文本转语音(TTS)1.关键组件Synthesia的TTS系统主要依赖于Tacotron2和WaveGlow模型。这些模型共同作用,将文本转换为高质量的语音。2.过程模型详解2.1文本预处理文本预处理是TTS的第一步,包括分词、标点符号处理、数字和日期格式转换等。分词(
- 基于JAVA开发APISIX插件
kiranet
后端架构gateway中间件
网关知识介绍什么是网关网关是一种能够在不同网络或协议之间进行数据交换的设备或服务器。网关可以实现不同网络之间的互联互通,也可以实现不同协议之间的转换和适配。网关可以根据不同的功能和层次进行分类。网关可以提供多种服务,例如路由、安全、负载均衡、缓存、压缩、加密、认证、授权、过滤、转码等。南北流量、东西流量南北流量客户端和服务器之间的流量被称为南北流量。东西流量不同服务器之间的流量与数据中心或不同数据
- 大模型问答机器人的智能化程度
AI大模型应用之禅
AI大模型与大数据javapythonjavascriptkotlingolang架构人工智能
大模型、问答机器人、智能化程度、自然语言处理、深度学习、Transformer模型、知识图谱、推理能力、对话系统1.背景介绍近年来,人工智能技术取得了飞速发展,特别是深度学习的兴起,为自然语言处理(NLP)领域带来了革命性的变革。其中,大模型问答机器人作为一种新型的智能交互系统,凭借其强大的语言理解和生成能力,在客服、教育、娱乐等领域展现出广阔的应用前景。问答机器人是指能够理解用户自然语言问题并给
- 大语言模型原理与工程实践:残差连接与层归一化
AI大模型应用之禅
AI大模型与大数据计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
1.背景介绍随着自然语言处理(NLP)的发展,深度学习在过去几年中取得了令人瞩目的成果。其中,循环神经网络(RNN)和卷积神经网络(CNN)在图像和文本分类、语义角色标注、机器翻译等领域表现出色。然而,这些网络在训练过程中经常遭遇梯度消失和梯度爆炸的问题。为了解决这些问题,我们引入了残差连接(ResidualConnections)和层归一化(BatchNormalization)来改善模型性能。
- 模型架构选择:从传统NLP到Transformer
AI天才研究院
AI大模型应用入门实战与进阶大数据AI人工智能计算大数据人工智能语言模型AI大模型LLMJavaPython架构设计AgentRPA
模型架构选择:从传统NLP到Transformer关键词:自然语言处理(NLP),模型架构,传统NLP,Transformer,RNN,CNN,预训练模型文章目录模型架构选择:从传统NLP到Transformer1.背景介绍1.1问题的由来1.2研究现状1.3研究意义1.4本文结构2.核心概念与联系3.核心算法原理&具体操作步骤3.1算法原理概述3.1.1传统NLP模型3.1.2RNN模型3.1.
- Transformer架构的GPU并行和之前的NLP算法并行有什么不同?
AI大模型学习不迷路
transformer自然语言处理大模型深度学习NLPLLM大语言模型
1.什么是GPU并行计算?GPU并行计算是一种利用图形处理单元(GPU)进行大规模并行数据处理的技术。与传统的中央处理单元(CPU)相比,GPU拥有更多的核心,能够同时处理数千个线程,这使得GPU在处理高度并行的任务时表现出色。在深度学习中,GPU并行计算被广泛应用于训练神经网络,加速模型训练过程。在2017年之前,自然语言处理(NLP)领域的研究者们通常会从头开始训练模型,那时能够利用GPU进行
- 【福州市AOI小区面】shp数据学校大厦商场等占地范围面数据内容测评
鸿业远图科技
arcgis
AOI城区小区面样图和数据范围查看:—字段里面有name字段。分类比较多tpye:每个值代表一个类型。比如字段type中1549代表小区住宅,1563代表学校。小区、学校等占地面积范围数据——小区范围占地面积面数据shp格式无偏移坐标,只有城区市区有农村没有。在这里插入图片描述
- Qt 智能指针详细介绍
zhaoyongCNSX
QtQt智能指针
1.Qt智能指针概述Qt提供了一套基于父子对象的内存管理机制,所以我们很少需要去手动delete.但程序中不一定所有类都是QObject的子类,这种情况下仍然需要使用一些智能指针.注意:在Qt中使用智能指针时,一定要避免发生多次析构.2.Qt中的智能指针分类根据不同的使用场景,可分为以下几种:共享数据.隐式或显式的共享数据(不共享指针),也被称为侵入式指针.QSharedDataPointer指向
- 《向量数据库指南》——MoE应用:解锁深度学习新境界的钥匙
大禹智库
《实战AI智能体》《向量数据库指南》深度学习人工智能向量数据库大禹智库低代码MoE模型
在深度学习的广阔天地里,混合专家(MoE)模型如同一把锐利的钥匙,正逐步解锁着各种复杂应用场景的新境界。作为大禹智库的向量数据库高级研究员,同时也是《向量数据库指南》的作者,我深感MoE模型在推动AI技术向前发展中所扮演的重要角色。今天,我将带大家深入探讨MoE模型在自然语言处理、计算机视觉以及多模态学习等领域的应用,并巧妙引导大家通过《向量数据库指南》获取更多干货和深度实战经验。一、自然语言处理
- LLM based Single Agent System
AGI大模型与大数据研究院
大数据AI人工智能计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
LLM-BasedSingleAgentSystem:ANewEraofIntelligentAutomation关键词:大语言模型,单智能体系统,强化学习,自然语言处理,智能自动化1.背景介绍近年来,随着深度学习技术的快速发展,大语言模型(LLM)在自然语言处理(NLP)领域取得了突破性进展。LLM凭借其强大的语言理解和生成能力,正在改变着人们与信息交互的方式。同时,人工智能领域的另一个重要研究
- AI大模型如何赋能电商行业
十二点的泡面
ai
随着技术的发展,越来越多的电商平台开始尝试运用AI技术来提高销售效率,从用户体验到供应链管理,AI深刻影响着行业的未来发展趋势。在AI加持下,如何使用AI技术实现购物推荐、会员分类、商品定价等方面的创新应用?如何运用AI技术提高电商平台的销售效率和用户体验呢?欢迎分享您的看法,为电商行业的数字化转型提供新的思路和方法。方向一:介绍AI技术在电商中的创新应用在电商领域,AI技术的应用正日益广泛,其中
- YOLO 目标检测编程详解
不知名靓仔
YOLO目标检测人工智能
引言目标检测是计算机视觉中的一个重要任务,它旨在识别图像中的对象并定位这些对象的位置。YOLO(YouOnlyLookOnce)是一种流行的目标检测算法,因其速度快且准确度高而广受好评。本文将深入探讨YOLO的原理及其实现方法,并提供一个使用Python和PyTorch的示例代码。项目源码见最下方1.YOLO算法简介YOLO算法的核心思想是将目标检测视为回归问题,而不是传统的分类加定位的两阶段方法
- java封装继承多态等
麦田的设计者
javaeclipsejvmcencapsulatopn
最近一段时间看了很多的视频却忘记总结了,现在只能想到什么写什么了,希望能起到一个回忆巩固的作用。
1、final关键字
译为:最终的
&
- F5与集群的区别
bijian1013
weblogic集群F5
http请求配置不是通过集群,而是F5;集群是weblogic容器的,如果是ejb接口是通过集群。
F5同集群的差别,主要还是会话复制的问题,F5一把是分发http请求用的,因为http都是无状态的服务,无需关注会话问题,类似
- LeetCode[Math] - #7 Reverse Integer
Cwind
java题解MathLeetCodeAlgorithm
原题链接:#7 Reverse Integer
要求:
按位反转输入的数字
例1: 输入 x = 123, 返回 321
例2: 输入 x = -123, 返回 -321
难度:简单
分析:
对于一般情况,首先保存输入数字的符号,然后每次取输入的末位(x%10)作为输出的高位(result = result*10 + x%10)即可。但
- BufferedOutputStream
周凡杨
首先说一下这个大批量,是指有上千万的数据量。
例子:
有一张短信历史表,其数据有上千万条数据,要进行数据备份到文本文件,就是执行如下SQL然后将结果集写入到文件中!
select t.msisd
- linux下模拟按键输入和鼠标
被触发
linux
查看/dev/input/eventX是什么类型的事件, cat /proc/bus/input/devices
设备有着自己特殊的按键键码,我需要将一些标准的按键,比如0-9,X-Z等模拟成标准按键,比如KEY_0,KEY-Z等,所以需要用到按键 模拟,具体方法就是操作/dev/input/event1文件,向它写入个input_event结构体就可以模拟按键的输入了。
linux/in
- ContentProvider初体验
肆无忌惮_
ContentProvider
ContentProvider在安卓开发中非常重要。与Activity,Service,BroadcastReceiver并称安卓组件四大天王。
在android中的作用是用来对外共享数据。因为安卓程序的数据库文件存放在data/data/packagename里面,这里面的文件默认都是私有的,别的程序无法访问。
如果QQ游戏想访问手机QQ的帐号信息一键登录,那么就需要使用内容提供者COnte
- 关于Spring MVC项目(maven)中通过fileupload上传文件
843977358
mybatisspring mvc修改头像上传文件upload
Spring MVC 中通过fileupload上传文件,其中项目使用maven管理。
1.上传文件首先需要的是导入相关支持jar包:commons-fileupload.jar,commons-io.jar
因为我是用的maven管理项目,所以要在pom文件中配置(每个人的jar包位置根据实际情况定)
<!-- 文件上传 start by zhangyd-c --&g
- 使用svnkit api,纯java操作svn,实现svn提交,更新等操作
aigo
svnkit
原文:http://blog.csdn.net/hardwin/article/details/7963318
import java.io.File;
import org.apache.log4j.Logger;
import org.tmatesoft.svn.core.SVNCommitInfo;
import org.tmateso
- 对比浏览器,casperjs,httpclient的Header信息
alleni123
爬虫crawlerheader
@Override
protected void doGet(HttpServletRequest req, HttpServletResponse res) throws ServletException, IOException
{
String type=req.getParameter("type");
Enumeration es=re
- java.io操作 DataInputStream和DataOutputStream基本数据流
百合不是茶
java流
1,java中如果不保存整个对象,只保存类中的属性,那么我们可以使用本篇文章中的方法,如果要保存整个对象 先将类实例化 后面的文章将详细写到
2,DataInputStream 是java.io包中一个数据输入流允许应用程序以与机器无关方式从底层输入流中读取基本 Java 数据类型。应用程序可以使用数据输出流写入稍后由数据输入流读取的数据。
- 车辆保险理赔案例
bijian1013
车险
理赔案例:
一货运车,运输公司为车辆购买了机动车商业险和交强险,也买了安全生产责任险,运输一车烟花爆竹,在行驶途中发生爆炸,出现车毁、货损、司机亡、炸死一路人、炸毁一间民宅等惨剧,针对这几种情况,该如何赔付。
赔付建议和方案:
客户所买交强险在这里不起作用,因为交强险的赔付前提是:“机动车发生道路交通意外事故”;
如果是交通意外事故引发的爆炸,则优先适用交强险条款进行赔付,不足的部分由商业
- 学习Spring必学的Java基础知识(5)—注解
bijian1013
javaspring
文章来源:http://www.iteye.com/topic/1123823,整理在我的博客有两个目的:一个是原文确实很不错,通俗易懂,督促自已将博主的这一系列关于Spring文章都学完;另一个原因是为免原文被博主删除,在此记录,方便以后查找阅读。
有必要对
- 【Struts2一】Struts2 Hello World
bit1129
Hello world
Struts2 Hello World应用的基本步骤
创建Struts2的Hello World应用,包括如下几步:
1.配置web.xml
2.创建Action
3.创建struts.xml,配置Action
4.启动web server,通过浏览器访问
配置web.xml
<?xml version="1.0" encoding="
- 【Avro二】Avro RPC框架
bit1129
rpc
1. Avro RPC简介 1.1. RPC
RPC逻辑上分为二层,一是传输层,负责网络通信;二是协议层,将数据按照一定协议格式打包和解包
从序列化方式来看,Apache Thrift 和Google的Protocol Buffers和Avro应该是属于同一个级别的框架,都能跨语言,性能优秀,数据精简,但是Avro的动态模式(不用生成代码,而且性能很好)这个特点让人非常喜欢,比较适合R
- lua set get cookie
ronin47
lua cookie
lua:
local access_token = ngx.var.cookie_SGAccessToken
if access_token then
ngx.header["Set-Cookie"] = "SGAccessToken="..access_token.."; path=/;Max-Age=3000"
end
- java-打印不大于N的质数
bylijinnan
java
public class PrimeNumber {
/**
* 寻找不大于N的质数
*/
public static void main(String[] args) {
int n=100;
PrimeNumber pn=new PrimeNumber();
pn.printPrimeNumber(n);
System.out.print
- Spring源码学习-PropertyPlaceholderHelper
bylijinnan
javaspring
今天在看Spring 3.0.0.RELEASE的源码,发现PropertyPlaceholderHelper的一个bug
当时觉得奇怪,上网一搜,果然是个bug,不过早就有人发现了,且已经修复:
详见:
http://forum.spring.io/forum/spring-projects/container/88107-propertyplaceholderhelper-bug
- [逻辑与拓扑]布尔逻辑与拓扑结构的结合会产生什么?
comsci
拓扑
如果我们已经在一个工作流的节点中嵌入了可以进行逻辑推理的代码,那么成百上千个这样的节点如果组成一个拓扑网络,而这个网络是可以自动遍历的,非线性的拓扑计算模型和节点内部的布尔逻辑处理的结合,会产生什么样的结果呢?
是否可以形成一种新的模糊语言识别和处理模型呢? 大家有兴趣可以试试,用软件搞这些有个好处,就是花钱比较少,就算不成
- ITEYE 都换百度推广了
cuisuqiang
GoogleAdSense百度推广广告外快
以前ITEYE的广告都是谷歌的Google AdSense,现在都换成百度推广了。
为什么个人博客设置里面还是Google AdSense呢?
都知道Google AdSense不好申请,这在ITEYE上也不是讨论了一两天了,强烈建议ITEYE换掉Google AdSense。至少,用一个好申请的吧。
什么时候能从ITEYE上来点外快,哪怕少点
- 新浪微博技术架构分析
dalan_123
新浪微博架构
新浪微博在短短一年时间内从零发展到五千万用户,我们的基层架构也发展了几个版本。第一版就是是非常快的,我们可以非常快的实现我们的模块。我们看一下技术特点,微博这个产品从架构上来分析,它需要解决的是发表和订阅的问题。我们第一版采用的是推的消息模式,假如说我们一个明星用户他有10万个粉丝,那就是说用户发表一条微博的时候,我们把这个微博消息攒成10万份,这样就是很简单了,第一版的架构实际上就是这两行字。第
- 玩转ARP攻击
dcj3sjt126com
r
我写这片文章只是想让你明白深刻理解某一协议的好处。高手免看。如果有人利用这片文章所做的一切事情,盖不负责。 网上关于ARP的资料已经很多了,就不用我都说了。 用某一位高手的话来说,“我们能做的事情很多,唯一受限制的是我们的创造力和想象力”。 ARP也是如此。 以下讨论的机子有 一个要攻击的机子:10.5.4.178 硬件地址:52:54:4C:98
- PHP编码规范
dcj3sjt126com
编码规范
一、文件格式
1. 对于只含有 php 代码的文件,我们将在文件结尾处忽略掉 "?>" 。这是为了防止多余的空格或者其它字符影响到代码。例如:<?php$foo = 'foo';2. 缩进应该能够反映出代码的逻辑结果,尽量使用四个空格,禁止使用制表符TAB,因为这样能够保证有跨客户端编程器软件的灵活性。例
- linux 脱机管理(nohup)
eksliang
linux nohupnohup
脱机管理 nohup
转载请出自出处:http://eksliang.iteye.com/blog/2166699
nohup可以让你在脱机或者注销系统后,还能够让工作继续进行。他的语法如下
nohup [命令与参数] --在终端机前台工作
nohup [命令与参数] & --在终端机后台工作
但是这个命令需要注意的是,nohup并不支持bash的内置命令,所
- BusinessObjects Enterprise Java SDK
greemranqq
javaBOSAPCrystal Reports
最近项目用到oracle_ADF 从SAP/BO 上调用 水晶报表,资料比较少,我做一个简单的分享,给和我一样的新手 提供更多的便利。
首先,我是尝试用JAVA JSP 去访问的。
官方API:http://devlibrary.businessobjects.com/BusinessObjectsxi/en/en/BOE_SDK/boesdk_ja
- 系统负载剧变下的管控策略
iamzhongyong
高并发
假如目前的系统有100台机器,能够支撑每天1亿的点击量(这个就简单比喻一下),然后系统流量剧变了要,我如何应对,系统有那些策略可以处理,这里总结了一下之前的一些做法。
1、水平扩展
这个最容易理解,加机器,这样的话对于系统刚刚开始的伸缩性设计要求比较高,能够非常灵活的添加机器,来应对流量的变化。
2、系统分组
假如系统服务的业务不同,有优先级高的,有优先级低的,那就让不同的业务调用提前分组
- BitTorrent DHT 协议中文翻译
justjavac
bit
前言
做了一个磁力链接和BT种子的搜索引擎 {Magnet & Torrent},因此把 DHT 协议重新看了一遍。
BEP: 5Title: DHT ProtocolVersion: 3dec52cb3ae103ce22358e3894b31cad47a6f22bLast-Modified: Tue Apr 2 16:51:45 2013 -070
- Ubuntu下Java环境的搭建
macroli
java工作ubuntu
配置命令:
$sudo apt-get install ubuntu-restricted-extras
再运行如下命令:
$sudo apt-get install sun-java6-jdk
待安装完毕后选择默认Java.
$sudo update- alternatives --config java
安装过程提示选择,输入“2”即可,然后按回车键确定。
- js字符串转日期(兼容IE所有版本)
qiaolevip
TODateStringIE
/**
* 字符串转时间(yyyy-MM-dd HH:mm:ss)
* result (分钟)
*/
stringToDate : function(fDate){
var fullDate = fDate.split(" ")[0].split("-");
var fullTime = fDate.split("
- 【数据挖掘学习】关联规则算法Apriori的学习与SQL简单实现购物篮分析
superlxw1234
sql数据挖掘关联规则
关联规则挖掘用于寻找给定数据集中项之间的有趣的关联或相关关系。
关联规则揭示了数据项间的未知的依赖关系,根据所挖掘的关联关系,可以从一个数据对象的信息来推断另一个数据对象的信息。
例如购物篮分析。牛奶 ⇒ 面包 [支持度:3%,置信度:40%] 支持度3%:意味3%顾客同时购买牛奶和面包。 置信度40%:意味购买牛奶的顾客40%也购买面包。 规则的支持度和置信度是两个规则兴
- Spring 5.0 的系统需求,期待你的反馈
wiselyman
spring
Spring 5.0将在2016年发布。Spring5.0将支持JDK 9。
Spring 5.0的特性计划还在工作中,请保持关注,所以作者希望从使用者得到关于Spring 5.0系统需求方面的反馈。