算法总结——数组篇

算法总结——数组篇

  • 一、数组
  • 二、二分查找
    • 二分法第一种写法
    • 二分法第二种写法
    • 相关题目推荐
    • Python版本1(左闭右闭)
    • Python版本2(左闭右开)
  • 三、移除元素
    • 暴力解法
    • 双指针法
    • 相关题目推荐
    • Python版本
  • 四、有序数组的平方
    • 暴力排序
    • 双指针法
    • Python版本
  • 五、长度最小的子数组
    • 暴力解法
    • 滑动窗口
    • 相关题目推荐
    • Python版本
  • 六、螺旋矩阵II
    • 类似题目
    • Python版本
  • 总结
    • 数组理论基础
    • 数组的经典题目
    • 二分法
    • 双指针法
    • 滑动窗口
    • 模拟行为

本文是在阅读微信公众号《代码随想录》后进行改写学习的

一、数组

数组是存放在连续内存空间上的相同类型数据的集合。
数组可以方便的通过下标索引的方式获取到下标下对应的数据。
正是因为数组的在内存空间的地址是连续的,所以我们在删除或者增添元素的时候,就难免要移动其他元素的地址。

在C++中二维数组在地址空间上是连续的。
像Java是没有指针的,同时也不对程序员暴漏其元素的地址,寻址操作完全交给虚拟机。所以看不到每个元素的地址情况。

二、二分查找

leecode 704. 二分查找
给定一个 n 个元素有序的(升序)整型数组 nums 和一个目标值 target ,写一个函数搜索 nums 中的 target,如果目标值存在返回下标,否则返回 -1。

示例 1:
 输入: nums = [-1,0,3,5,9,12], target = 9
 输出: 4
 解释: 9 出现在 nums 中并且下标为4

示例 2:
 输入: nums = [-1,0,3,5,9,12], target = 2
 输出: -1
 解释: 2 不存在 nums 中因此返回 -1

提示:
 你可以假设 nums 中的所有元素是不重复的。
 n 将在 [1, 10000]之间。
 nums 的每个元素都将在 [-9999, 9999]之间。

数组为有序数组,同时题目还强调数组中无重复元素,因为一旦有重复元素,使用二分查找法返回的元素下标可能不是唯一的,这些都是使用二分法的前提条件。
二分查找涉及的很多的边界条件,逻辑比较简单,但就是写不好。例如到底是 while(left < right) 还是 while(left <= right),到底是right = middle呢,还是要right = middle - 1呢?

写二分法,区间的定义一般为两种,左闭右闭即[left, right],或者左闭右开即[left, right)。

二分法第一种写法

第一种写法,我们定义 target 是在一个在左闭右闭的区间里,也就是[left, right] (这个很重要非常重要)。
区间的定义这就决定了二分法的代码应该如何写,因为定义target在[left, right]区间,所以有如下两点:
 while (left <= right) 要使用 <= ,因为left == right是有意义的,所以使用 <=
 if (nums[middle] > target) right 要赋值为 middle - 1,因为当前这个nums[middle]一定不是target,那么接下来要查找的左区间结束下标位置就是 middle - 1

// 版本一
class Solution {
public:
    int search(vector<int>& nums, int target) {
        int left = 0;
        int right = nums.size() - 1; // 定义target在左闭右闭的区间里,[left, right]
        while (left <= right) { // 当left==right,区间[left, right]依然有效,所以用 <=
            int middle = left + ((right - left) / 2);// 防止溢出 等同于(left + right)/2
            if (nums[middle] > target) {
                right = middle - 1; // target 在左区间,所以[left, middle - 1]
            } else if (nums[middle] < target) {
                left = middle + 1; // target 在右区间,所以[middle + 1, right]
            } else { // nums[middle] == target
                return middle; // 数组中找到目标值,直接返回下标
            }
        }
        // 未找到目标值
        return -1;
    }
};

二分法第二种写法

如果说定义 target 是在一个在左闭右开的区间里,也就是[left, right) ,那么二分法的边界处理方式则截然不同。
有如下两点:
 while (left < right),这里使用 < ,因为left == right在区间[left, right)是没有意义的
 if (nums[middle] > target) right 更新为 middle,因为当前nums[middle]不等于target,去左区间继续寻找,而寻找区间是左闭右开区间,所以right更新为middle,即:下一个查询区间不会去比较nums[middle]

// 版本二
class Solution {
public:
    int search(vector<int>& nums, int target) {
        int left = 0;
        int right = nums.size(); // 定义target在左闭右开的区间里,即:[left, right)
        while (left < right) { // 因为left == right的时候,在[left, right)是无效的空间,所以使用 <
            int middle = left + ((right - left) >> 1);
            if (nums[middle] > target) {
                right = middle; // target 在左区间,在[left, middle)中
            } else if (nums[middle] < target) {
                left = middle + 1; // target 在右区间,在[middle + 1, right)中
            } else { // nums[middle] == target
                return middle; // 数组中找到目标值,直接返回下标
            }
        }
        // 未找到目标值
        return -1;
    }
};

为什么很多同学对于二分法都是一看就会,一写就废?
其实主要就是对区间的定义没有理解清楚,在循环中没有始终坚持根据查找区间的定义来做边界处理。区间的定义就是不变量,那么在循环中坚持根据查找区间的定义来做边界处理,就是循环不变量规则。

相关题目推荐

35.搜索插入位置
34.在排序数组中查找元素的第一个和最后一个位置
69.x 的平方根
367.有效的完全平方数

Python版本1(左闭右闭)

class Solution:
    def search(self, nums: List[int], target: int) -> int:
        left, right = 0, len(nums) - 1
        
        while left <= right:
            middle = (left + right) // 2

            if nums[middle] < target:
                left = middle + 1
            elif nums[middle] > target:
                right = middle - 1
            else:
                return middle
        return -1

Python版本2(左闭右开)

class Solution:
    def search(self, nums: List[int], target: int) -> int:
        left,right  =0, len(nums)
        while left < right:
            mid = (left + right) // 2
            if nums[mid] < target:
                left = mid+1
            elif nums[mid] > target:
                right = mid
            else:
                return mid
        return -1

三、移除元素

leecode 27. 移除元素
给你一个数组 nums 和一个值 val,你需要 原地 移除所有数值等于 val 的元素,并返回移除后数组的新长度。
不要使用额外的数组空间,你必须仅使用 O(1) 额外空间并原地修改输入数组。
元素的顺序可以改变。你不需要考虑数组中超出新长度后面的元素。

示例 1: 给定 nums = [3,2,2,3], val = 3, 函数应该返回新的长度 2, 并且 nums 中的前两个元素均为 2。 你不需要考虑数组中超出新长度后面的元素。

示例 2: 给定 nums = [0,1,2,2,3,0,4,2], val = 2, 函数应该返回新的长度 5, 并且 nums 中的前五个元素为 0, 1, 3, 0, 4。
你不需要考虑数组中超出新长度后面的元素。

要知道数组的元素在内存地址中是连续的,不能单独删除数组中的某个元素,只能覆盖。

暴力解法

这个题目暴力的解法就是两层for循环,一个for循环遍历数组元素 ,第二个for循环更新数组。
很明显暴力解法的时间复杂度是O(n^2)

// 时间复杂度:O(n^2)
// 空间复杂度:O(1)
class Solution {
public:
    int removeElement(vector<int>& nums, int val) {
        int size = nums.size();
        for (int i = 0; i < size; i++) {
            if (nums[i] == val) { // 发现需要移除的元素,就将数组集体向前移动一位
                for (int j = i + 1; j < size; j++) {
                    nums[j - 1] = nums[j];
                }
                i--; // 因为下表i以后的数值都向前移动了一位,所以i也向前移动一位
                size--; // 此时数组的大小-1
            }
        }
        return size;
    }
};

双指针法

双指针法(快慢指针法): 通过一个快指针和慢指针在一个for循环下完成两个for循环的工作
双指针法(快慢指针法)在数组和链表的操作中是非常常见的,很多考察数组、链表、字符串等操作的面试题,都使用双指针法。

// 时间复杂度:O(n)
// 空间复杂度:O(1)
class Solution {
public:
    int removeElement(vector<int>& nums, int val) {
        int slowIndex = 0;
        for (int fastIndex = 0; fastIndex < nums.size(); fastIndex++) {
            if (val != nums[fastIndex]) {
                nums[slowIndex++] = nums[fastIndex];
            }
        }
        return slowIndex;
    }
};

相关题目推荐

26.删除排序数组中的重复项
283.移动零
844.比较含退格的字符串
977.有序数组的平方

Python版本

class Solution:
    def removeElement(self, nums: List[int], val: int) -> int:
        i,n = 0,len(nums)
        for j in range(n):
            if nums[j] != val:
                nums[i] = nums[j]
                i += 1
        return i

四、有序数组的平方

leecode 977.有序数组的平方
给你一个按 非递减顺序 排序的整数数组 nums,返回 每个数字的平方 组成的新数组,要求也按 非递减顺序 排序。

示例 1: 输入:nums = [-4,-1,0,3,10] 输出:[0,1,9,16,100] 解释:平方后,数组变为 [16,1,0,9,100],排序后,数组变为 [0,1,9,16,100]

示例 2: 输入:nums = [-7,-3,2,3,11] 输出:[4,9,9,49,121]

暴力排序

最直观的莫过于:每个数平方之后,排个序,代码如下:

class Solution {
public:
    vector<int> sortedSquares(vector<int>& A) {
        for (int i = 0; i < A.size(); i++) {
            A[i] *= A[i];
        }
        sort(A.begin(), A.end()); // 快速排序
        return A;
    }
};

这个时间复杂度是 O(n + nlogn), 可以说是O(nlogn)的时间复杂度,但为了和下面双指针法算法时间复杂度有鲜明对比,我记为 O(n + nlogn)。

双指针法

数组其实是有序的, 只不过负数平方之后可能成为最大数了。
那么数组平方的最大值就在数组的两端,不是最左边就是最右边,不可能是中间。
此时可以考虑双指针法了,i指向起始位置,j指向终止位置。

定义一个新数组result,和A数组一样的大小,让k指向result数组终止位置:
如果A[i] * A[i] < A[j] * A[j] 那么result[k–] = A[j] * A[j];
如果A[i] * A[i] >= A[j] * A[j] 那么result[k–] = A[i] * A[i];

class Solution {
public:
    vector<int> sortedSquares(vector<int>& A) {
        int k = A.size() - 1;
        vector<int> result(A.size(), 0);
        for (int i = 0, j = A.size() - 1; i <= j;) { // 注意这里要i <= j,因为最后要处理两个元素
            if (A[i] * A[i] < A[j] * A[j])  {
                result[k--] = A[j] * A[j];
                j--;
            }
            else {
                result[k--] = A[i] * A[i];
                i++;
            }
        }
        return result;
    }
};

此时的时间复杂度为O(n),相对于暴力排序的解法O(n + nlogn)还是提升不少的。

Python版本

class Solution:
    def sortedSquares(self, nums: List[int]) -> List[int]:
        n = len(nums)
        i,j,k = 0,n - 1,n - 1
        ans = [-1] * n
        while i <= j:
            lm = nums[i] ** 2
            rm = nums[j] ** 2
            if lm > rm:
                ans[k] = lm
                i += 1
            else:
                ans[k] = rm
                j -= 1
            k -= 1
        return ans

五、长度最小的子数组

leecode 209.长度最小的子数组
给定一个含有 n 个正整数的数组和一个正整数 s ,找出该数组中满足其和 ≥ s 的长度最小的 连续 子数组,并返回其长度。如果不存在符合条件的子数组,返回 0。

示例:
输入:s = 7, nums = [2,3,1,2,4,3] 输出:2 解释:子数组 [4,3] 是该条件下的长度最小的子数组。

暴力解法

这道题目暴力解法当然是 两个for循环,然后不断的寻找符合条件的子序列,时间复杂度很明显是O(n^2) 。

class Solution {
public:
    int minSubArrayLen(int s, vector<int>& nums) {
        int result = INT32_MAX; // 最终的结果
        int sum = 0; // 子序列的数值之和
        int subLength = 0; // 子序列的长度
        for (int i = 0; i < nums.size(); i++) { // 设置子序列起点为i
            sum = 0;
            for (int j = i; j < nums.size(); j++) { // 设置子序列终止位置为j
                sum += nums[j];
                if (sum >= s) { // 一旦发现子序列和超过了s,更新result
                    subLength = j - i + 1; // 取子序列的长度
                    result = result < subLength ? result : subLength;
                    break; // 因为我们是找符合条件最短的子序列,所以一旦符合条件就break
                }
            }
        }
        // 如果result没有被赋值的话,就返回0,说明没有符合条件的子序列
        return result == INT32_MAX ? 0 : result;
    }
};

时间复杂度: O ( n 2 ) O(n^2) O(n2) 空间复杂度: O ( 1 ) O(1) O(1)

滑动窗口

所谓滑动窗口,就是不断的调节子序列的起始位置和终止位置,从而得出我们要想的结果。
可以发现滑动窗口也可以理解为双指针法的一种!只不过这种解法更像是一个窗口的移动,所以叫做滑动窗口更适合一些。

在本题中实现滑动窗口,主要确定如下三点:
 窗口内是什么?
 如何移动窗口的起始位置?
 如何移动窗口的结束位置?

 窗口就是满足其和 ≥ s 的长度最小的连续子数组。
 窗口的起始位置如何移动:如果当前窗口的值大于s了,窗口就要向前移动了(也就是该缩小了)。
 窗口的结束位置如何移动:窗口的结束位置就是遍历数组的指针,窗口的起始位置设置为数组的起始位置就可以了。
算法总结——数组篇_第1张图片
可以发现滑动窗口的精妙之处在于根据当前子序列和大小的情况,不断调节子序列的起始位置。从而将O(n^2)的暴力解法降为O(n)。

class Solution {
public:
    int minSubArrayLen(int s, vector<int>& nums) {
        int result = INT32_MAX;
        int sum = 0; // 滑动窗口数值之和
        int i = 0; // 滑动窗口起始位置
        int subLength = 0; // 滑动窗口的长度
        for (int j = 0; j < nums.size(); j++) {
            sum += nums[j];
            // 注意这里使用while,每次更新 i(起始位置),并不断比较子序列是否符合条件
            while (sum >= s) {
                subLength = (j - i + 1); // 取子序列的长度
                result = result < subLength ? result : subLength;
                sum -= nums[i++]; // 这里体现出滑动窗口的精髓之处,不断变更i(子序列的起始位置)
            }
        }
        // 如果result没有被赋值的话,就返回0,说明没有符合条件的子序列
        return result == INT32_MAX ? 0 : result;
    }
};

时间复杂度: O ( n ) O(n) O(n),空间复杂度: O ( 1 ) O(1) O(1)

相关题目推荐

相关题目推荐
904.水果成篮 (opens new window)
76.最小覆盖子串 (opens new window)

Python版本

class Solution:
    def minSubArrayLen(self, s: int, nums: List[int]) -> int:
        # 定义一个无限大的数
        res = float("inf")
        Sum = 0
        index = 0
        for i in range(len(nums)):
            Sum += nums[i]
            while Sum >= s:
                res = min(res, i-index+1)
                Sum -= nums[index]
                index += 1
        return 0 if res==float("inf") else res

六、螺旋矩阵II

leecode 59.螺旋矩阵II
给定一个正整数 n,生成一个包含 1 到 n² 所有元素,且元素按顺时针顺序螺旋排列的正方形矩阵。

示例:
输入: 3 输出: [ [ 1, 2, 3 ], [ 8, 9, 4 ], [ 7, 6, 5 ] ]

大家还记得我们在这篇文章数组:每次遇到二分法,都是一看就会,一写就废 (opens new window)中讲解了二分法,提到如果要写出正确的二分法一定要坚持循环不变量原则。

而求解本题依然是要坚持循环不变量原则。

模拟顺时针画矩阵的过程:

 填充上行从左到右
 填充右列从上到下
 填充下行从右到左
 填充左列从下到上
由外向内一圈一圈这么画下去。

可以发现这里的边界条件非常多,在一个循环中,如此多的边界条件,如果不按照固定规则来遍历,那就是一进循环深似海。

这里一圈下来,我们要画每四条边,这四条边怎么画,每画一条边都要坚持一致的左闭右开,或者左开又闭的原则,这样这一圈才能按照统一的规则画下来。

代码如下,已经详细注释了每一步的目的,可以看出while循环里判断的情况是很多的,代码里处理的原则也是统一的左闭右开。
整体C++代码如下:

class Solution {
public:
    vector<vector<int>> generateMatrix(int n) {
        vector<vector<int>> res(n, vector<int>(n, 0)); // 使用vector定义一个二维数组
        int startx = 0, starty = 0; // 定义每循环一个圈的起始位置
        int loop = n / 2; // 每个圈循环几次,例如n为奇数3,那么loop = 1 只是循环一圈,矩阵中间的值需要单独处理
        int mid = n / 2; // 矩阵中间的位置,例如:n为3, 中间的位置就是(1,1),n为5,中间位置为(2, 2)
        int count = 1; // 用来给矩阵中每一个空格赋值
        int offset = 1; // 每一圈循环,需要控制每一条边遍历的长度
        int i,j;
        while (loop --) {
            i = startx;
            j = starty;

            // 下面开始的四个for就是模拟转了一圈
            // 模拟填充上行从左到右(左闭右开)
            for (j = starty; j < starty + n - offset; j++) {
                res[startx][j] = count++;
            }
            // 模拟填充右列从上到下(左闭右开)
            for (i = startx; i < startx + n - offset; i++) {
                res[i][j] = count++;
            }
            // 模拟填充下行从右到左(左闭右开)
            for (; j > starty; j--) {
                res[i][j] = count++;
            }
            // 模拟填充左列从下到上(左闭右开)
            for (; i > startx; i--) {
                res[i][j] = count++;
            }

            // 第二圈开始的时候,起始位置要各自加1, 例如:第一圈起始位置是(0, 0),第二圈起始位置是(1, 1)
            startx++;
            starty++;

            // offset 控制每一圈里每一条边遍历的长度
            offset += 2;
        }

        // 如果n为奇数的话,需要单独给矩阵最中间的位置赋值
        if (n % 2) {
            res[mid][mid] = count;
        }
        return res;
    }
};

类似题目

54.螺旋矩阵
剑指Offer 29.顺时针打印矩阵

Python版本

class Solution:
    def generateMatrix(self, n: int) -> List[List[int]]:
        left, right, up, down = 0, n-1, 0, n-1
        matrix = [ [0]*n for _ in range(n)]
        num = 1
        while left<=right and up<=down:
            # 填充左到右
            for i in range(left, right+1):
                matrix[up][i] = num
                num += 1
            up += 1
            # 填充上到下
            for i in range(up, down+1):
                matrix[i][right] = num
                num += 1
            right -= 1
            # 填充右到左
            for i in range(right, left-1, -1):
                matrix[down][i] = num
                num += 1
            down -= 1
            # 填充下到上
            for i in range(down, up-1, -1):
                matrix[i][left] = num
                num += 1
            left += 1
        return matrix

总结

数组理论基础

数组是非常基础的数据结构,在面试中,考察数组的题目一般在思维上都不难,主要是考察对代码的掌控能力。

首先要知道数组在内存中的存储方式,这样才能真正理解数组相关的面试题
数组是存放在连续内存空间上的相同类型数据的集合。
数组可以方便的通过下标索引的方式获取到下标下对应的数据。

数组的经典题目

在面试中,数组是必考的基础数据结构。

其实数据的题目在思想上一般比较简单的,但是如果想高效,并不容易。

我们之前一共讲解了四道经典数组题目,每一道题目都代表一个类型,一种思想。

二分法

数组:每次遇到二分法,都是一看就会,一写就废

暴力解法时间复杂度:O(n);
二分法时间复杂度:O(logn)

在这道题目中我们讲到了循环不变量原则,只有在循环中坚持对区间的定义,才能清楚的把握循环中的各种细节。

二分法是算法面试中的常考题,建议通过这道题目,锻炼自己手撕二分的能力。

双指针法

双指针法(快慢指针法):通过一个快指针和慢指针在一个for循环下完成两个for循环的工作。

暴力解法时间复杂度:O(n^2)
双指针时间复杂度:O(n)

双指针法(快慢指针法)在数组和链表的操作中是非常常见的,很多考察数组和链表操作的面试题,都使用双指针法。

滑动窗口

本题介绍了数组操作中的另一个重要思想:滑动窗口。

暴力解法时间复杂度:O(n^2) 滑动窗口时间复杂度:O(n)

本题中,主要要理解滑动窗口如何移动 窗口起始位置,达到动态更新窗口大小的,从而得出长度最小的符合条件的长度。

滑动窗口的精妙之处在于根据当前子序列和大小的情况,不断调节子序列的起始位置。从而将O(n^2)的暴力解法降为O(n)。

如果没有接触过这一类的方法,很难想到类似的解题思路,滑动窗口方法还是很巧妙的。

模拟行为

模拟类的题目在数组中很常见,不涉及到什么算法,就是单纯的模拟,十分考察大家对代码的掌控能力。

在这道题目中,我们再一次介绍到了循环不变量原则,其实这也是写程序中的重要原则。

相信大家又遇到过这种情况: 感觉题目的边界调节超多,一波接着一波的判断,找边界,踩了东墙补西墙,好不容易运行通过了,代码写的十分冗余,毫无章法,其实真正解决题目的代码都是简洁的,或者有原则性的,大家可以在这道题目中体会到这一点。

你可能感兴趣的:(数据结构,算法,Python,算法,数据结构,leetcode)