给定一个只包含数字的字符串,复原它并返回所有可能的 IP 地址格式。
有效的 IP 地址 正好由四个整数(每个整数位于 0 到 255 之间组成,且不能含有前导 0),整数之间用 '.' 分隔。
例如:"0.1.2.201" 和 "192.168.1.1" 是 有效的 IP 地址,但是 "0.011.255.245"、"192.168.1.312" 和 "[email protected]" 是 无效的 IP 地址。
示例 1:
示例 2:
示例 3:
示例 4:
示例 5:
提示:
此题属于切割问题,可以抽象为树形结构:
回溯函数参数,startIndex一定是需要的,因为不能重复分割,记录下一层递归分割的起始位置。本题我们还需要一个变量pointNum,记录添加逗点的数量。
本题明确要求只会分成4段,所以不能用切割线切到最后作为终止条件,而是分割的段数作为终止条件。pointNum表示逗点数量,pointNum为3说明字符串分成了4段了。然后验证一下第四段是否合法,如果合法就加入到结果集里。
单层回溯过程在for (int i = startIndex; i < s.size(); i++)
循环中 [startIndex, i] 这个区间截取的子串,需要判断这个子串是否合法。如果合法就在字符串后面加上符号.
表示已经分割。递归调用时,下一层递归的startIndex要从i+2开始(因为需要在字符串中加入了分隔符.
),同时记录分割符的数量pointNum 要 +1。回溯的时候,就将刚刚加入的分隔符.
删掉就可以了,pointNum也要-1。
最后就是在写一个判断段位是否是有效段位了。主要考虑到如下三点:
代码如下:
class Solution {
private:
vector result;// 记录结果
// startIndex: 搜索的起始位置,pointNum:添加逗点的数量
void backtracking(string& s, int startIndex, int pointNum) {
if (pointNum == 3) { // 逗点数量为3时,分隔结束
// 判断第四段子字符串是否合法,如果合法就放进result中
if (isValid(s, startIndex, s.size() - 1)) {
result.push_back(s);
}
return;
}
for (int i = startIndex; i < s.size(); i++) {
if (isValid(s, startIndex, i)) { // 判断 [startIndex,i] 这个区间的子串是否合法
s.insert(s.begin() + i + 1 , '.'); // 在i的后面插入一个逗点
pointNum++;
backtracking(s, i + 2, pointNum); // 插入逗点之后下一个子串的起始位置为i+2
pointNum--; // 回溯
s.erase(s.begin() + i + 1); // 回溯删掉逗点
} else break; // 不合法,直接结束本层循环
}
}
// 判断字符串s在左闭又闭区间[start, end]所组成的数字是否合法
bool isValid(const string& s, int start, int end) {
if (start > end) {
return false;
}
if (s[start] == '0' && start != end) { // 0开头的数字不合法
return false;
}
int num = 0;
for (int i = start; i <= end; i++) {
if (s[i] > '9' || s[i] < '0') { // 遇到非数字字符不合法
return false;
}
num = num * 10 + (s[i] - '0');
if (num > 255) { // 如果大于255了不合法
return false;
}
}
return true;
}
public:
vector restoreIpAddresses(string s) {
result.clear();
if (s.size() < 4 || s.size() > 12) return result; // 算是剪枝了
backtracking(s, 0, 0);
return result;
}
};
给定一组不含重复元素的整数数组 nums,返回该数组所有可能的子集(幂集)。
说明:解集不能包含重复的子集。
示例: 输入: nums = [1,2,3] 输出: [ [3], [1], [2], [1,2,3], [1,3], [2,3], [1,2], [] ]
全局变量数组path为子集收集元素,二维数组result存放子集组合。startIndex 作为函数的参数。
就是startIndex已经大于数组的长度了,就终止了,因为没有元素可取了。
单层搜索逻辑为对数组从 startIndex 进行 for 循环,将元素收入子集,然后进行下一层从 i+1 开始的递归函数,最后记得回溯。
注意:求取子集问题,不需要任何剪枝!因为子集就是要遍历整棵树。
代码如下:
class Solution {
private:
vector> result;
vector path;
void backtracking(vector& nums, int startIndex) {
result.push_back(path); // 收集子集,要放在终止添加的上面,否则会漏掉自己
if (startIndex >= nums.size()) { // 终止条件可以不加
return;
}
for (int i = startIndex; i < nums.size(); i++) {
path.push_back(nums[i]);
backtracking(nums, i + 1);
path.pop_back();
}
}
public:
vector> subsets(vector& nums) {
result.clear();
path.clear();
backtracking(nums, 0);
return result;
}
};
给定一个可能包含重复元素的整数数组 nums,返回该数组所有可能的子集(幂集)。
说明:解集不能包含重复的子集。
示例:
从图中可以看出,同一树层上重复取2 就要过滤掉,同一树枝上就可以重复取2,因为同一树枝上元素的集合才是唯一子集 。
去重可以使用 bool 类型的数组,当nums[i] == nums[i-1]时,used[ i -1]为false, 代表是同一层的元素重复,所以可以直接跳过这一元素。
注意:去重需要先对数组进行排序。
代码如下:
class Solution {
private:
vector> result;
vector path;
void backtracking(vector& nums, int startIndex, vector& used) {
result.push_back(path);
for (int i = startIndex; i < nums.size(); i++) {
// used[i - 1] == true,说明同一树枝candidates[i - 1]使用过
// used[i - 1] == false,说明同一树层candidates[i - 1]使用过
// 而我们要对同一树层使用过的元素进行跳过
if (i > 0 && nums[i] == nums[i - 1] && used[i - 1] == false) {
continue;
}
path.push_back(nums[i]);
used[i] = true;
backtracking(nums, i + 1, used);
used[i] = false;
path.pop_back();
}
}
public:
vector> subsetsWithDup(vector& nums) {
result.clear();
path.clear();
vector used(nums.size(), false);
sort(nums.begin(), nums.end()); // 去重需要排序
backtracking(nums, 0, used);
return result;
}
};