GEO数据库 mRNA芯片分析全流程

GEO数据库 mRNA芯片分析全流程


我们演示的数据集是GSE19136,样本可分为三组(对照组,支架组,紫杉醇组),具体实验设计情况请查看链接。本篇文章主要对对照组和支架组 做差异分析。分析流程主要包括基于limma包的差异分析、pheatmap包的热图和ggplot2的火山图(包括对基因的批量标记)。

1. 差异分析

  • 数据下载

setwd("D:\\R\\wjh\\GSE19136")

library(GEOquery)    #用GEOquery包获取GEO数据

eSet<-getGEO('GSE19136',destdir='./',getGPL=F)  #下载数据,构建eSet对象

eset<-exprs(eSet[[1]])[,c(1,2,4,5,7,8,10,11)]    #提取基因表达矩阵

metadata<-pData(eSet[[1]])    #可以查看芯片的描述性信息,为后面分组做准备

x<-metadata$title[c(1,2,4,5,7,8,10,11)]      #查看芯片的标题,可以选择用于分组的字段

group_list<-factor(unlist(lapply(x,function(x) strsplit(as.character(x),"_")[[1]][5])))  #我们发现取第5个字段作为分组信息最好

  • ID转换

gpl <- getGEO('GPL570', destdir=".")    #下载并获取GSE19136对应平台的注释信息

anno1<-Table(gpl)[,c(1,11)]    #提取探针ID,gene symbol

eset<-as.data.frame(eset)  #矩阵转换成数据框,便于后面添加非数值型的列

eset$ID <- rownames(eset)  #添加一列(基因名)

merg<-merge(eset,anno1,by="ID")  #合并表达矩阵和基因名,通过探针号索引

y<-merg$`Gene Symbol`

gene<-unlist(lapply(y,function(y) strsplit(as.character(y)," /// ")[[1]][1]))

merg$gene <- gene  #一个探针对应多个基因的时候,取第一个基因

aggr<-aggregate(merg[,2:9],by=list(merg$gene),mean) #多个探针对应一个基因的时候,取平均值

  • 差异分析

eset <- aggr[,2:9]

rownames(eset)<-aggr[,1]  #得到一个行名为unique的gene symbol矩阵

design<-model.matrix(~-1+group_list)    #构建实验设计矩阵

library(limma)     

contrast.matrix<-makeContrasts(contrasts = "group_listbare-group_listcontrol", levels = design)  #构建对比模型,比较两个实验条件下表达数据,根据上面的group_list修改bare和control

fit <- lmFit(log2(eset),design)    #线性模型拟合

fit1 <- contrasts.fit(fit, contrast.matrix)  #根据对比模型进行差值计算

fit2 <- eBayes(fit1)    #贝叶斯检验

tempOutput = topTable(fit2, coef="group_listbare-group_listcontrol", n=nrow(fit2),lfc=log2(1))    #生成所有基因的检验结果报表

dif<-tempOutput[tempOutput[,"P.Value"]<0.05,] #根据P值筛选全部差异表达基因(图)

dim(dif)

head(dif)

write.csv(dif,file = "dif.csv",quote = F)

2. 画热图


rt <- read.table("dif.csv",header = T,sep = ",",stringsAsFactors = F)

heat<-eset[rownames(eset) %in% c(head(rownames(subset(dif,dif$logFC>0)),15),head(rownames(subset(dif,dif$logFC<0)),15)),]  #对前15个上调基因和下调基因做热图

library(pheatmap)

x <- t(scale(t(heat)))  #事实证明用这个做归一化,效果最好

pheatmap(x)

GSE19136heatmap30.png

3. 火山图


##################### 火山图  #################################

tempOutput1 = topTable(fit2, coef="group_listbare-group_listcontrol", n=nrow(fit2),lfc=log2(1))    #生成所有基因的检验结果报表

data<-tempOutput1[tempOutput1[,"P.Value"]<=1,]

data$gene<-rownames(data)

data$sig[data$P.Value>=0.05 | abs(data$logFC) < 1] <- "black"

data$sig[data$P.Value<0.05 & data$logFC >= 1] <- "red"

data$sig[data$P.Value<0.05 & data$logFC <= -1] <- "green"

library(ggplot2)

library(ggrepel)

library(dplyr)

ggplot(data=data, aes(x=logFC, y =-log10(P.Value),color =sig)) +

    geom_point() +theme_set(theme_bw())+theme(panel.grid=element_blank(),strip.text = element_blank())+

    scale_color_manual(values = c("black","green","red"))+

    geom_hline(yintercept = -log10(0.05),lty=4,lwd=0.6,alpha=0.8)+

    geom_vline(xintercept = c(log2(2),-log2(2)),lty=4,lwd=0.6,alpha=0.8)

GSE19136volcano.png

4. 基因标记的火山图


input <- data

Gene<-as.data.frame(row.names(heat))

volc = ggplot(input, aes(logFC, -log10(P.Value))) +

          geom_point(aes(col=sig)) + scale_color_manual(values=c("black","green", "red")) +

  ggtitle("Your title here")+geom_point(data=input[input$gene %in% Gene[,1],], aes(logFC, -log10(P.Value)), colour="blue", size=2) +

  geom_hline(yintercept = -log10(0.05),lty=4,lwd=0.6,alpha=0.8)+

          geom_vline(xintercept = c(log2(2),-log2(2)),lty=4,lwd=0.6,alpha=0.8)

volc+geom_text_repel(data=input[input$gene %in% Gene[,1],], aes(label=gene))

GSE19136MarkVolcano.png

5. GO和KEGG

library(clusterProfiler)
library(pathview)
rt <- read.table("dif.csv",header = T,sep = ",",stringsAsFactors = F)
colnames(rt)[1] <- "SYMBOL"
GeneSymbol <- rt$SYMBOL
gene.symbol.eg<- id2eg(ids=GeneSymbol, category='SYMBOL', org='Hs',na.rm = F) #如果是小鼠,就是Mm
merg<-merge(gene.symbol.eg,rt,by="SYMBOL")
mer <- subset(merg,merg$ENTREZID != "NA")
geneFC <- mer$logFC
gene <- mer$ENTREZID
names(geneFC) <- gene
kkd <- enrichGO(gene = gene,"org.Hs.eg.db",ont = "BP",qvalueCutoff = 0.05) #如果是小鼠,就是Mm
write.table(kkd@result,file = "GO.xls",sep = "\t",quote = F,row.names = F)
barplot(kkd,drop=T,showCategory = 12)

cnetplot(kkd,categorySize = "geneNum",foldChange = geneFC)
GSE19136GO.png
kk <- enrichKEGG(gene = gene,organism = "human",qvalueCutoff = 0.05)   #如果是小鼠,就是mouse
write.table(kk@result,file = "KEGG.xls",sep = "\t",quote = F,row.names = F)
barplot(kk,drop=T,showCategory = 12)

cnetplot(kk,categorySize = "geneNum",foldChange = geneFC)
GSE19136KEGG.png
setwd("./pathview") #新建pathview文件夹,存放KEGG关系图
keggxls<-read.table("KEGG.xls",sep = "\t",header = T)
keggxls<-subset(keggxls,keggxls$p.adjust<0.05)
for (i in keggxls$ID){
    pv.out <- pathview(gene.data = geneFC, pathway.id = i, species = "hsa", out.suffix = "pathview") #如果是小鼠mmu,看GSE70410
}

6. PPI

ppi<-read.table("string_interactions0.5.tsv",header = T,sep = "\t",stringsAsFactors = F)
ppi_attr1 <- rt[rt$SYMBOL %in% unique(c(ppi[,1],ppi[,2])),]  # rt即是dif
ppi_attr <- merge(ppi_attr1,as.data.frame(table(c(ppi[,1],ppi[,2]))),by.x="SYMBOL",by.y="Var1")
write.csv(ppi_attr,file = "ppi_attrabute.csv",quote = F,row.names = F)
write.table(ppi_attr,file = "ppi_attrabute.txt",quote = F,sep = "\t",row.names = F)

如果觉得好,请给我一点动力!

你可能感兴趣的:(GEO数据库 mRNA芯片分析全流程)