- 大模型最新面试题系列:训练篇之模型监控与调试
人肉推土机
大模型最新面试题集锦大全面试人工智能pytorchAI编程语言模型
1.训练过程中需要监控哪些关键指标?如何设置报警阈值?关键指标损失函数值:包括训练损失和验证损失,反映模型在训练和验证数据上的拟合程度。准确率:分类任务中的预测正确样本占总样本的比例,评估模型的预测能力。召回率和F1值:在二分类或多分类任务中,用于更全面地评估模型性能,特别是在正负样本不均衡的情况下。学习率:监控学习率的变化,确保其处于合适的范围,避免学习率过大导致模型不稳定或过小导致训练收敛过慢
- 具身智能行业
[shenhonglei]
具身觉醒:智能进化的未来之路人工智能机器人
具身智能行业综合分析资源下载-具身智能导图.xmind资源下载-具身智能导图.xmind一、行业概况定义与核心特征具身智能(EmbodiedAI)指通过物理实体(如机器人、自动驾驶设备等)与环境的动态交互,实现感知、认知和行动控制的智能系统。其核心特征是“知行合一”,强调通过实际交互提升智能水平,而非仅依赖数据训练。技术融合:结合人工智能(AI)、机器人技术、多模态大模型
- 【yolov8】模型导出----pytorch导出为onnx模型
栗子风暴
YOLOpytorch人工智能深度学习
【yolov8】模型导出一、为什么要使用yolo的导出模式二、确保安装必要的库:三、yolov8模型导出3.1不同格式配置参数3.2导出格式四、导出模型性能优化4.1使用TensorRT导出模型有什么好处?4.2导出YOLOv8模型时,如何启用INT8量化?4.3为什么输出模型时动态输入尺寸很重要?4.4优化模型性能需要考虑哪些关键的导出参数?五、问题六、疑问训练模型的最终目标是将其部署到实际应用
- LLMs之Llama-3:基于Colab平台(免费T4-GPU)利用LLaMA-Factory的GUI界面(底层采用unsloth优化框架【加速训练5~30倍+减少50%的内存占用】)对llama-3
一个处女座的程序猿
NLP/LLMs成长书屋大语言模型unslothLLaMA-3LoRA
LLMs之Llama-3:基于Colab平台(免费T4-GPU)利用LLaMA-Factory的GUI界面(底层采用unsloth优化框架【加速训练5~30倍+减少50%的内存占用】)对llama-3-8b-Instruct-bnb-4bit模型采用alpaca数据集【instruction-input-output】实现CLI方式/GUI傻瓜可视化方式,进配置微调→参数行LoRA指令微调→模型推
- Bert模型学习笔记
文三路张同学
其他bert学习深度学习
Bert模型学习笔记Fromhttps://www.bilibili.com/video/BV1Ey4y1874yemmm讲实话这个视频太简单了,不建议看。可以看看李沐的视频:https://www.bilibili.com/video/BV1PL411M7eQ这篇文章主要是四个部分:bert的整体架构如何做预训练mlm+nsp如何微调bert(没看)代码解析(没看)Bert架构基础架构是Tran
- 存储性能调优:掌握I/O性能调优和缓存策略配置
Morris只会敲命令
缓存
引言在数字化转型加速的今天,数据已成为企业核心资产,而存储系统的性能直接影响业务响应速度、用户体验和IT基础设施的总体效率。无论是高并发交易系统、实时分析平台,还是AI训练场景,存储I/O瓶颈和缓存策略配置不当都可能引发性能雪崩。本文将从硬件层到软件层,系统性地解析存储性能调优的核心技术,并提供可落地的优化策略。1.1存储介质特性与选型HDDvs.SSDvs.NVMeHDD的机械寻道延迟(平均5-
- AdaBoost算法
Mr终游
机器学习算法决策树
目录一、核心原理:二、算法步骤三、关键优势:四.局限与解决五、代码示例(鸢尾花数据集)AdaBoost(AdaptiveBoosting)是一种经典的集成学习算法,通过组合多个弱分类器(如决策树)来构建强分类器。其核心思想是通过迭代优化残差(错误)和动态调整样本权重,逐步提升模型性能。以下是对AdaBoost的简明总结和关键要点:一、核心原理:提升法:通过顺序训练多个弱分类器,每轮专注修正前一个模
- Bert学习笔记
缓释多巴胺。
大模型相关知识语言模型bert
一、Bert架构BERT使用了双向的TransformerGPT使用从左到右的单向信息ELMo把单独训练的从左到右及从右到左的LSTM模型进行合并二、Bert预训练任务2.1遮蔽语言模型MLM任务:随机屏蔽(masking)部分输入token,然后只预测那些被屏蔽的token。问题:预训练任务与微调任务不一致原因:在finetuning期间从未看到[MASK]token,预训练和finetunin
- 代码随想录算法训练营第七天|Leetcode 344.反转字符串 541. 反转字符串II 卡码网:54.替换数字
昂子的博客
算法leetcodejava数据结构
344.反转字符串建议:本题是字符串基础题目,就是考察reverse函数的实现,同时也明确一下平时刷题什么时候用库函数,什么时候不用库函数题目链接/文章讲解/视频讲解:代码随想录思路非常简单,两个指针一个指向头一个指向尾巴,对于字符串,我们定义两个指针(也可以说是索引下标),一个从字符串前面,一个从字符串后面,两个指针同时向中间移动,并交换元素。classSolution{publicvoidre
- 【Py/Java/C++/C/JS/Go六种语言OD独家2024E卷真题】20天拿下华为OD笔试之【模拟】2024E-最大相连男生数【欧弟算法】全网注释最详细分类最全的华为OD真题题解
闭着眼睛学算法
最新华为OD真题#模拟#状态压缩算法javac++c语言华为odjavascriptpython
可上欧弟OJ系统练习华子OD、大厂真题绿色聊天软件戳oj1441了解算法冲刺训练(备注【CSDN】否则不通过)文章目录相关推荐阅读题目描述与示例题目描述输入描述输出描述示例输入输出解题思路代码代码一:分类写法pythonjavacppCNodejavaScriptGo代码二:合并写法pythonjavacppCNodejavaScriptGo*代码三:状态压缩写法pythonjavacppCNod
- 【Py/Java/C++/JS/Go五种语言【OD独家2024E卷真题】20天拿下华为OD笔试之【哈希表】2024E-猜字谜【欧弟算法】全网注释最详细分类最全的华为OD真题题解
闭着眼睛学算法
最新华为OD真题#哈希表javac++华为odpython算法leetcode
可上欧弟OJ系统练习华子OD、大厂真题绿色聊天软件戳oj1441了解算法冲刺训练(备注【CSDN】否则不通过)文章目录相关推荐阅读题目描述与示例题目描述输入描述输出描述备注示例一输入输出示例二输入输出解题思路谜面和谜底如何匹配暴力匹配所有谜底谜底库哈希表的构建代码解法一:哈希表预处理谜底pythonjavacppNodejavaScriptgo时空复杂度解法二:暴力匹配解(会超时)pythonja
- 【Py/Java/C++三种语言OD独家2024E卷真题】20天拿下华为OD笔试之【排序】2024E-VLAN资源池【欧弟算法】全网注释最详细分类最全的华为OD真题题解
闭着眼睛学算法
#模拟最新华为OD真题javac++华为odleetcode算法python
可上欧弟OJ系统练习华子OD、大厂真题绿色聊天软件戳od1441了解算法冲刺训练(备注【CSDN】否则不通过)文章目录相关推荐阅读题目描述与示例题目描述输入描述输出描述示例一输入输出说明示例二输入输出说明示例三输入输出说明解题思路用二元组表示区间删除某一元素后区间的变化将二元组形式转换回原形式代码pythonjavacpp时空复杂度华为OD算法/大厂面试高频题算法练习冲刺训练相关推荐阅读【华为OD
- 【Py/Java/C++三种语言OD独家2024E卷真题】20天拿下华为OD笔试之【模拟】2024E-靠谱的车【欧弟算法】全网注释最详细分类最全的华为OD真题题解
闭着眼睛学算法
最新华为OD真题#模拟#数学javac++华为od算法pythonleetcode
可上欧弟OJ系统练习华子OD、大厂真题绿色聊天软件戳od1441了解算法冲刺训练(备注【CSDN】否则不通过)文章目录相关推荐阅读题目描述与示例题目描述输入描述输出描述示例一输入输出示例二输入输出示例三输入输出解题思路从A进制到九进制从九进制到十进制代码pythonjavacpp时空复杂度华为OD算法/大厂面试高频题算法练习冲刺训练相关推荐阅读【华为OD机考】2024D+E卷最全真题【完全原创题解
- 【Py/Java/C++三种语言OD独家2024D卷真题】20天拿下华为OD笔试之【模拟】2024D-学生重新排队【欧弟算法】全网注释最详细分类最全的华为OD真题题解
闭着眼睛学算法
最新华为OD真题#模拟#蒙特卡洛javac++华为odleetcode算法python
有LeetCode算法/华为OD考试扣扣交流群可加948025485可上欧弟OJ系统练习华子OD、大厂真题绿色聊天软件戳od1441了解算法冲刺训练(备注【CSDN】否则不通过)文章目录题目描述与示例题目描述输入描述输出描述备注示例一输入输出说明示例二输入输出说明解题思路数组预处理检查某个组是否已经排好队检查所有组是否已经排好队蒙特卡洛模拟框架单次蒙特卡洛模拟整体思路编号挑选优化组号区间优化单次蒙
- 【Py/Java/C++三种语言OD独家2024D卷真题】20天拿下华为OD笔试之【前缀和/固定滑窗】2024D-查找接口成功率最优时间段【欧弟算法】全网注释最详细分类最全的华为OD真题题解
闭着眼睛学算法
最新华为OD真题#前缀和#滑动窗口算法javac++华为odleetcodepython
有LeetCode算法/华为OD考试扣扣交流群可加948025485可上欧弟OJ系统练习华子OD、大厂真题绿色聊天软件戳od1441了解算法冲刺训练(备注【CSDN】否则不通过)文章目录题目描述与示例题目描述输入描述输出描述示例一输入输出说明示例二输入输出说明解题思路贪心思想将除法转换为乘法固定滑窗前缀和代码解法一:前缀和pythonjavacpp解法二:固定滑窗pythonjavacpp时空复杂
- 【Py/Java/C++三种语言OD独家2024D卷真题】20天拿下华为OD笔试之【贪心】2024D-有效子字符串【欧弟算法】全网注释最详细分类最全的华为OD真题题解
闭着眼睛学算法
最新华为OD真题#贪心#双指针javac++华为od算法python贪心贪心算法
有LeetCode算法/华为OD考试扣扣交流群可加948025485可上全网独家的欧弟OJ系统练习华子OD、大厂真题绿色聊天软件戳od1336了解算法冲刺训练文章目录题目描述与示例题目输入输出描述示例一输入输出示例二输入输出解题思路代码pythonjavacpp时空复杂度华为OD算法/大厂面试高频题算法练习冲刺训练从2024年4月15号开始,OD机考全部配置为2024D卷。注意两个关键点:会遇到C
- LLM辅助编程:代码自动生成与优化
AI智能涌现深度研究
计算机软件编程原理与应用实践DeepSeekR1&大数据AI人工智能javapythonjavascriptkotlingolang架构人工智能
LLM,代码生成,代码优化,编程辅助,AI编程,自然语言处理,深度学习1.背景介绍随着软件开发的日益复杂化,程序员面临着越来越高的开发压力和效率要求。传统的编程方式依赖于手动编写代码,这不仅耗时费力,而且容易出现错误。近年来,随着深度学习技术的快速发展,基于大型语言模型(LLM)的代码生成和优化技术逐渐成为软件开发领域的新兴热点。LLM是一种强大的人工智能模型,能够理解和生成人类语言。通过训练大量
- 【Gaussian Model】高斯分布模型
HP-Succinum
机器学习机器学习算法人工智能
目录高斯分布模型用于异常检测(GaussianModelforAnomalyDetection)1.高斯分布简介2.高斯分布模型用于异常检测(1)训练阶段:估计数据分布(2)检测阶段:计算概率判断异常点3.示例代码4.高斯分布异常检测的优缺点优点缺点5.适用场景6.结论高斯分布模型用于异常检测(GaussianModelforAnomalyDetection)在数据分析和机器学习任务中,异常检测(
- 飞书多维表格+DeepSeek R1:打工人必备的AI神器,效率暴涨1000%![特殊字符]
sherlock__cc
人工智能飞书
导语当飞书多维表格遇上国产最强推理大模型DeepSeekR1,会擦出怎样的火花?本文手把手教你用「零代码」实现批量文案改写、论文精读、视频脚本生成。一、颠覆认知的三大核心优势1.批量处理的工业级效率单次处理1000+条数据,告别传统API逐条调用支持跨表格数据联动(如从CRM系统自动抓取客户需求)实时监控处理进度,失败任务自动重试2.零代码的极简交互无需Python环境配置直接输入自然语言指令(如
- 【大模型技术】LlamaFactory 的原理解析与应用
大数据追光猿
大模型transformer人工智能语言模型pythongithubdocker机器学习
LlamaFactory是一个基于LLaMA系列模型(如LLaMA、LLaMA2、Vicuna等)的开源框架,旨在帮助开发者和研究人员快速实现大语言模型(LLM,LargeLanguageModel)的微调、推理和部署。它提供了一套完整的工具链,支持从数据准备到模型训练、优化和应用的全流程开发。以下是关于LlamaFactory的解析:1.LlamaFactory的核心功能(1)模型微调支持多种微
- HHO优化SVM混合核(高斯核和Sigmoid核)回归预测
WSY算法爱好者
支持向量机回归算法
训练集-平均绝对误差(MAE):0.54544训练集-平均绝对误差百分比(MAPE):0.0011634训练集-均方根误差(RMSE):0.66571训练集-决定系数(R):0.95297测试集-平均绝对误差(MAE):0.31575测试集-平均绝对误差百分比(MAPE):0.00067398测试集-均方根误差(RMSE):0.39158测试集-决定系数(R):0.97566------HHO优化
- 开源模型应用落地-qwen2-7b-instruct-LoRA微调-LLaMA-Factory-单机多卡-RTX 4090双卡(五)
开源技术探险家
开源模型-实际应用落地#开源模型-微调实战密码自然语言处理深度学习语言模型
一、前言本篇文章将使用LLaMA-Factory去高效微调QWen2系列模型,通过阅读本文,您将能够更好地掌握这些关键技术,理解其中的关键技术要点,并应用于自己的项目中。二、术语介绍2.1.LoRA微调LoRA(Low-RankAdaptation)用于微调大型语言模型(LLM)。是一种有效的自适应策略,它不会引入额外的推理延迟,并在保持模型质量的同时显着减少下游任务的可训练参数数量。2.2.参数
- 大模型实战—Llama3-8B 中文微调
不二人生
大模型大模型llama3
Llama3-8B+LLaMA-Factory中文微调Llama3是目前开源大模型中最优秀的模型之一,但是原生的Llama3模型训练的中文语料占比非常低,因此在中文的表现方便略微欠佳!本教程就以Llama3-8B-Instruct开源模型为模型基座,通过开源程序LLaMA-Factory来进行中文的微调,提高Llama3的中文能力!LLaMA-Factory是一个开源的模型训练工具Llama3-8
- 揭秘AWS GPU实例:以极致AI算力与成本优化,重塑企业智能竞争力
AWS官方合作商
人工智能aws云计算gpu算力
在AI模型规模指数级增长的今天,算力已成为企业创新的胜负手。面对动辄千亿参数的LLM大模型训练、实时高并发的AI推理场景,如何兼顾超强算力与极致成本?本文将深度解析AWSGPU实例的颠覆性技术方案,带您解锁AI时代的核心生产力。一、AWSGPU实例:为AI而生的算力引擎1.1硬件级加速:定义行业标杆NVIDIA顶级芯片阵容:搭载A100/V100TensorCoreGPU(P4/P3实例)、最新H
- 【大模型系列篇】Vanna-ai基于检索增强(RAG)的sql生成框架
木亦汐丫
大模型语言模型sqlagiai数据库人工智能embedding
简介Vanna是基于检索增强(RAG)的sql生成框架Vanna使用一种称为LLM(大型语言模型)的生成式人工智能。简而言之,这些模型是在大量数据(包括一堆在线可用的SQL查询)上进行训练的,并通过预测响应提示中最有可能的下一个单词或“标记”来工作。Vanna优化了提示(通过向量数据库使用嵌入搜索)并微调LLM模型以生成更好的SQL。Vanna可以使用和试验许多不同的LLM,以获得最准确的结果。V
- LLaMA-2 7B 简介
Ash Butterfield
自然语言处理(NLP)专栏nlp人工智能
LLaMA-27B是Meta(前Facebook)推出的LLaMA-2(LargeLanguageModelMetaAI2)系列中的一个7B参数(70亿参数)版本。LLaMA-2作为LLaMA的升级版本,专为更高效的推理和更广泛的应用场景设计,支持开源使用,并可用于研究和商业用途。LLaMA-27B主要特点参数规模:7B(70亿参数),适用于资源受限的环境,如边缘设备或小型服务器。训练数据:采用了
- 深度学习_第二轮
Humingway
深度学习深度学习人工智能
损失函数对偏置和权重求导,x、y作为常量确实,当进行模型训练时,(x)和(y)分别代表输入特征和对应的输出值,它们以数据点对的形式存在,一个数据集中通常包含多对这样的数据。每一对((x_i),(y_i))代表了数据集中的一个样本。在计算损失函数的梯度(即关于权重的偏导数)时,需要考虑整个数据集中的所有样本。对于每个样本((x_i),(y_i)),我们计算其对损失函数的贡献,并通过求和或平均这些贡献
- 如何从零开始训练大模型?(附AGI大模型路线图)
脱泥不tony
agi人工智能产品经理语言模型大数据学习AI大模型
1背景根据scalinglaw,模型越大,高质量数据越多,效果越好。但还有一个很直观的情况,随着预训练样本的质量不断提升,训练手段的优化。新的模型,往往效果能轻松反超参数量两倍于它的模型。例如,最新出的minicpm,微信内部评测效果也是非常棒的。跟规模相对接近的2b、7b模型比,得分比qwen2b高,和qwen7b比有的高有的低。这个是minicpm的详细技术文档。https://shengdi
- yolov8训练模型、测试视频
灰灰学姐
深度学习神经网络YOLOpython机器学习
yolov8先训练生成best.pt文件,用这个生成的模型进行视频的测试因为本来用的代码生成的测试视频打不开,格式应该是损坏了,或者部分帧没有正常保存吧。修改了一下代码,现状可以正常打开生成的视频了。1、训练代码train.pyimportos#os.environ["CUDA_VISIBLE_DEVICES"]="3"#同样是选择第3块GPUfromultralyticsimportYOLO#L
- python dataframe遍历_对Python中DataFrame按照行遍历的方法_python
weixin_39881167
pythondataframe遍历
下面就为大家分享一篇对Python中DataFrame按照行遍历的方法,具有很好的参考价值,希望对大家有所帮助。一起过来看看吧在做分类模型时候,需要在DataFrame中按照行获取数据以便于进行训练和测试。importpandasaspddict=[[1,2,3,4,5,6],[2,3,4,5,6,7],[3,4,5,6,7,8],[4,5,6,7,8,9],[5,6,7,8,9,10]]data
- java工厂模式
3213213333332132
java抽象工厂
工厂模式有
1、工厂方法
2、抽象工厂方法。
下面我的实现是抽象工厂方法,
给所有具体的产品类定一个通用的接口。
package 工厂模式;
/**
* 航天飞行接口
*
* @Description
* @author FuJianyong
* 2015-7-14下午02:42:05
*/
public interface SpaceF
- nginx频率限制+python测试
ronin47
nginx 频率 python
部分内容参考:http://www.abc3210.com/2013/web_04/82.shtml
首先说一下遇到这个问题是因为网站被攻击,阿里云报警,想到要限制一下访问频率,而不是限制ip(限制ip的方案稍后给出)。nginx连接资源被吃空返回状态码是502,添加本方案限制后返回599,与正常状态码区别开。步骤如下:
- java线程和线程池的使用
dyy_gusi
ThreadPoolthreadRunnabletimer
java线程和线程池
一、创建多线程的方式
java多线程很常见,如何使用多线程,如何创建线程,java中有两种方式,第一种是让自己的类实现Runnable接口,第二种是让自己的类继承Thread类。其实Thread类自己也是实现了Runnable接口。具体使用实例如下:
1、通过实现Runnable接口方式 1 2
- Linux
171815164
linux
ubuntu kernel
http://kernel.ubuntu.com/~kernel-ppa/mainline/v4.1.2-unstable/
安卓sdk代理
mirrors.neusoft.edu.cn 80
输入法和jdk
sudo apt-get install fcitx
su
- Tomcat JDBC Connection Pool
g21121
Connection
Tomcat7 抛弃了以往的DBCP 采用了新的Tomcat Jdbc Pool 作为数据库连接组件,事实上DBCP已经被Hibernate 所抛弃,因为他存在很多问题,诸如:更新缓慢,bug较多,编译问题,代码复杂等等。
Tomcat Jdbc P
- 敲代码的一点想法
永夜-极光
java随笔感想
入门学习java编程已经半年了,一路敲代码下来,现在也才1w+行代码量,也就菜鸟水准吧,但是在整个学习过程中,我一直在想,为什么很多培训老师,网上的文章都是要我们背一些代码?比如学习Arraylist的时候,教师就让我们先参考源代码写一遍,然
- jvm指令集
程序员是怎么炼成的
jvm 指令集
转自:http://blog.csdn.net/hudashi/article/details/7062675#comments
将值推送至栈顶时 const ldc push load指令
const系列
该系列命令主要负责把简单的数值类型送到栈顶。(从常量池或者局部变量push到栈顶时均使用)
0x02 &nbs
- Oracle字符集的查看查询和Oracle字符集的设置修改
aijuans
oracle
本文主要讨论以下几个部分:如何查看查询oracle字符集、 修改设置字符集以及常见的oracle utf8字符集和oracle exp 字符集问题。
一、什么是Oracle字符集
Oracle字符集是一个字节数据的解释的符号集合,有大小之分,有相互的包容关系。ORACLE 支持国家语言的体系结构允许你使用本地化语言来存储,处理,检索数据。它使数据库工具,错误消息,排序次序,日期,时间,货
- png在Ie6下透明度处理方法
antonyup_2006
css浏览器FirebugIE
由于之前到深圳现场支撑上线,当时为了解决个控件下载,我机器上的IE8老报个错,不得以把ie8卸载掉,换个Ie6,问题解决了,今天出差回来,用ie6登入另一个正在开发的系统,遇到了Png图片的问题,当然升级到ie8(ie8自带的开发人员工具调试前端页面JS之类的还是比较方便的,和FireBug一样,呵呵),这个问题就解决了,但稍微做了下这个问题的处理。
我们知道PNG是图像文件存储格式,查询资
- 表查询常用命令高级查询方法(二)
百合不是茶
oracle分页查询分组查询联合查询
----------------------------------------------------分组查询 group by having --平均工资和最高工资 select avg(sal)平均工资,max(sal) from emp ; --每个部门的平均工资和最高工资
- uploadify3.1版本参数使用详解
bijian1013
JavaScriptuploadify3.1
使用:
绑定的界面元素<input id='gallery'type='file'/>$("#gallery").uploadify({设置参数,参数如下});
设置的属性:
id: jQuery(this).attr('id'),//绑定的input的ID
langFile: 'http://ww
- 精通Oracle10编程SQL(17)使用ORACLE系统包
bijian1013
oracle数据库plsql
/*
*使用ORACLE系统包
*/
--1.DBMS_OUTPUT
--ENABLE:用于激活过程PUT,PUT_LINE,NEW_LINE,GET_LINE和GET_LINES的调用
--语法:DBMS_OUTPUT.enable(buffer_size in integer default 20000);
--DISABLE:用于禁止对过程PUT,PUT_LINE,NEW
- 【JVM一】JVM垃圾回收日志
bit1129
垃圾回收
将JVM垃圾回收的日志记录下来,对于分析垃圾回收的运行状态,进而调整内存分配(年轻代,老年代,永久代的内存分配)等是很有意义的。JVM与垃圾回收日志相关的参数包括:
-XX:+PrintGC
-XX:+PrintGCDetails
-XX:+PrintGCTimeStamps
-XX:+PrintGCDateStamps
-Xloggc
-XX:+PrintGC
通
- Toast使用
白糖_
toast
Android中的Toast是一种简易的消息提示框,toast提示框不能被用户点击,toast会根据用户设置的显示时间后自动消失。
创建Toast
两个方法创建Toast
makeText(Context context, int resId, int duration)
参数:context是toast显示在
- angular.identity
boyitech
AngularJSAngularJS API
angular.identiy 描述: 返回它第一参数的函数. 此函数多用于函数是编程. 使用方法: angular.identity(value); 参数详解: Param Type Details value
*
to be returned. 返回值: 传入的value 实例代码:
<!DOCTYPE HTML>
- java-两整数相除,求循环节
bylijinnan
java
import java.util.ArrayList;
import java.util.List;
public class CircleDigitsInDivision {
/**
* 题目:求循环节,若整除则返回NULL,否则返回char*指向循环节。先写思路。函数原型:char*get_circle_digits(unsigned k,unsigned j)
- Java 日期 周 年
Chen.H
javaC++cC#
/**
* java日期操作(月末、周末等的日期操作)
*
* @author
*
*/
public class DateUtil {
/** */
/**
* 取得某天相加(减)後的那一天
*
* @param date
* @param num
*
- [高考与专业]欢迎广大高中毕业生加入自动控制与计算机应用专业
comsci
计算机
不知道现在的高校还设置这个宽口径专业没有,自动控制与计算机应用专业,我就是这个专业毕业的,这个专业的课程非常多,既要学习自动控制方面的课程,也要学习计算机专业的课程,对数学也要求比较高.....如果有这个专业,欢迎大家报考...毕业出来之后,就业的途径非常广.....
以后
- 分层查询(Hierarchical Queries)
daizj
oracle递归查询层次查询
Hierarchical Queries
If a table contains hierarchical data, then you can select rows in a hierarchical order using the hierarchical query clause:
hierarchical_query_clause::=
start with condi
- 数据迁移
daysinsun
数据迁移
最近公司在重构一个医疗系统,原来的系统是两个.Net系统,现需要重构到java中。数据库分别为SQL Server和Mysql,现需要将数据库统一为Hana数据库,发现了几个问题,但最后通过努力都解决了。
1、原本通过Hana的数据迁移工具把数据是可以迁移过去的,在MySQl里面的字段为TEXT类型的到Hana里面就存储不了了,最后不得不更改为clob。
2、在数据插入的时候有些字段特别长
- C语言学习二进制的表示示例
dcj3sjt126com
cbasic
进制的表示示例
# include <stdio.h>
int main(void)
{
int i = 0x32C;
printf("i = %d\n", i);
/*
printf的用法
%d表示以十进制输出
%x或%X表示以十六进制的输出
%o表示以八进制输出
*/
return 0;
}
- NsTimer 和 UITableViewCell 之间的控制
dcj3sjt126com
ios
情况是这样的:
一个UITableView, 每个Cell的内容是我自定义的 viewA viewA上面有很多的动画, 我需要添加NSTimer来做动画, 由于TableView的复用机制, 我添加的动画会不断开启, 没有停止, 动画会执行越来越多.
解决办法:
在配置cell的时候开始动画, 然后在cell结束显示的时候停止动画
查找cell结束显示的代理
- MySql中case when then 的使用
fanxiaolong
casewhenthenend
select "主键", "项目编号", "项目名称","项目创建时间", "项目状态","部门名称","创建人"
union
(select
pp.id as "主键",
pp.project_number as &
- Ehcache(01)——简介、基本操作
234390216
cacheehcache简介CacheManagercrud
Ehcache简介
目录
1 CacheManager
1.1 构造方法构建
1.2 静态方法构建
2 Cache
2.1&
- 最容易懂的javascript闭包学习入门
jackyrong
JavaScript
http://www.ruanyifeng.com/blog/2009/08/learning_javascript_closures.html
闭包(closure)是Javascript语言的一个难点,也是它的特色,很多高级应用都要依靠闭包实现。
下面就是我的学习笔记,对于Javascript初学者应该是很有用的。
一、变量的作用域
要理解闭包,首先必须理解Javascript特殊
- 提升网站转化率的四步优化方案
php教程分享
数据结构PHP数据挖掘Google活动
网站开发完成后,我们在进行网站优化最关键的问题就是如何提高整体的转化率,这也是营销策略里最最重要的方面之一,并且也是网站综合运营实例的结果。文中分享了四大优化策略:调查、研究、优化、评估,这四大策略可以很好地帮助用户设计出高效的优化方案。
PHP开发的网站优化一个网站最关键和棘手的是,如何提高整体的转化率,这是任何营销策略里最重要的方面之一,而提升网站转化率是网站综合运营实力的结果。今天,我就分
- web开发里什么是HTML5的WebSocket?
naruto1990
Webhtml5浏览器socket
当前火起来的HTML5语言里面,很多学者们都还没有完全了解这语言的效果情况,我最喜欢的Web开发技术就是正迅速变得流行的 WebSocket API。WebSocket 提供了一个受欢迎的技术,以替代我们过去几年一直在用的Ajax技术。这个新的API提供了一个方法,从客户端使用简单的语法有效地推动消息到服务器。让我们看一看6个HTML5教程介绍里 的 WebSocket API:它可用于客户端、服
- Socket初步编程——简单实现群聊
Everyday都不同
socket网络编程初步认识
初次接触到socket网络编程,也参考了网络上众前辈的文章。尝试自己也写了一下,记录下过程吧:
服务端:(接收客户端消息并把它们打印出来)
public class SocketServer {
private List<Socket> socketList = new ArrayList<Socket>();
public s
- 面试:Hashtable与HashMap的区别(结合线程)
toknowme
昨天去了某钱公司面试,面试过程中被问道
Hashtable与HashMap的区别?当时就是回答了一点,Hashtable是线程安全的,HashMap是线程不安全的,说白了,就是Hashtable是的同步的,HashMap不是同步的,需要额外的处理一下。
今天就动手写了一个例子,直接看代码吧
package com.learn.lesson001;
import java
- MVC设计模式的总结
xp9802
设计模式mvc框架IOC
随着Web应用的商业逻辑包含逐渐复杂的公式分析计算、决策支持等,使客户机越
来越不堪重负,因此将系统的商业分离出来。单独形成一部分,这样三层结构产生了。
其中‘层’是逻辑上的划分。
三层体系结构是将整个系统划分为如图2.1所示的结构[3]
(1)表现层(Presentation layer):包含表示代码、用户交互GUI、数据验证。
该层用于向客户端用户提供GUI交互,它允许用户