- 关于使用python进行处理雷达数据笔记
六毛驴
python数据分析
好久不见,甚是想念本人深知这段时间鸽了一篇博(上一篇博),后续会补上的,今天想写一下关于使用python进行TI雷达接收回波数据处理的一些常见问题和解决方法。这也是前几天领导给我布置的任务,所以我将这段时间自己遇到的并且已经解决的问题进行了简单的汇总,也会推荐几本这几天阅读了python书籍。python书籍推荐:python学习手册MarkLutz著(对应python版本3.X,2.X都可)Py
- Tsfresh + TA-Lib + LightGBM :A 股市场量化投资策略实战入门
船长@Quant
Python金融科技pythontsfreshTA-LibLightGBM量化技术策略开发
Tsfresh+TA-Lib+LightGBM:A股市场量化投资策略实战入门本项目以A股市场为研究对象,通过量化技术对市场数据进行分析,构建量化投资策略,并利用历史数据回测验证策略的有效性。项目旨在为量化技术初学者提供一个系统的学习框架,帮助读者掌握从数据获取到策略评估的全流程操作。文中内容仅限技术学习与代码实践参考,市场存在不确定性,技术分析需谨慎验证,不构成任何投资建议。适合量化新手建立系统认
- Docker打包深度学习项目
FLY_LTL
docker深度学习容器
文章目录Docker打包深度学习项目1.Docker和NVIDIAContainerToolkit的安装1.Docker2.NVIDIAContainerToolkit3.添加国内镜像源2.使用Dockerfile打包并保存镜像1.Dockerfile2.通过Dockerfile生成镜像3.保存镜像和加载4.运行Docker并测试参考Docker打包深度学习项目本文来源于个人实践总结,供各位同学参
- Flink读取kafka数据并写入HDFS
王知无(import_bigdata)
Flink系统性学习专栏hdfskafkaflink
硬刚大数据系列文章链接:2021年从零到大数据专家的学习指南(全面升级版)2021年从零到大数据专家面试篇之Hadoop/HDFS/Yarn篇2021年从零到大数据专家面试篇之SparkSQL篇2021年从零到大数据专家面试篇之消息队列篇2021年从零到大数据专家面试篇之Spark篇2021年从零到大数据专家面试篇之Hbase篇
- 使用TensorFlow、OpenCV和Pygame实现图像处理与游戏开发
UwoiGit
tensorflowopencvpygame
在本篇文章中,我们将介绍如何结合使用TensorFlow、OpenCV和Pygame来进行图像处理和游戏开发。这三个工具在机器学习、计算机视觉和游戏开发领域都非常流行,并且它们的结合可以提供强大的功能和无限的创造力。我们将逐步介绍如何安装和配置这些工具,并提供相关的源代码示例。安装TensorFlowTensorFlow是一个基于数据流图的开源机器学习框架,提供了丰富的工具和库来构建和训练各种深度
- 机器学习之KMeans算法
知舟不叙
机器学习算法kmeans
文章目录引言1.KMeans算法简介2.KMeans算法的数学原理3.KMeans算法的步骤3.1初始化簇中心3.2分配数据点3.3更新簇中心3.4停止条件4.KMeans算法的优缺点4.1优点4.2缺点5.KMeans算法的应用场景5.1图像分割5.2市场细分5.3文档聚类5.4异常检测6.Python实现KMeans算法7.总结引言KMeans算法是机器学习中最经典的无监督学习算法之一,广泛应
- 机器学习流程—数据预处理 清洗
不二人生
机器学习机器学习人工智能数据预处理
文章目录机器学习流程—数据预处理清洗定义问题数据预处理数据加载与展示重复数据处理数据类型空值处理无关特征删除数据分布删除异常值生成标签和特征数据分割机器学习流程—数据预处理清洗数据处理是将数据从给定形式转换为更可用和更理想的形式的任务,即使其更有意义、信息更丰富。使用机器学习算法、数学建模和统计知识,整个过程可以自动化。这个完整过程的输出可以是任何所需的形式,如图形、视频、图表、表格、图像等等,具
- 仓颉:关于封装,继承,多态
繁星幽蓝悼梦影
仓颉华为harmonyos
在对于仓颉有了初步了解之后,我们自然会想在我们之前所学习,编写的简单代码上添加一些其他的功能,今天我们就来讲几个重要的小功能封装为了提高数据访问的安全性,我们可以使用访问修饰符private。那么我们应该通过什么方法提高呢,我们有两种方法:1.通过方法2.通过属性设计器。参考如下代码packagecjchapter4.chapter1publicclassUser{privatevara1:Int
- 游戏成瘾与学习动力激发策略研究——了解“情感解离”“创伤理论”
*TQK*
知也思维认知心理学研究
一、情感解离(EmotionalDissociation)定义:情感解离是一种心理防御机制,指个体在经历无法承受的情绪压力或创伤时,通过切断情感体验与认知、记忆或现实感知的联系来保护自我。它不是简单的“麻木”,而是大脑为应对极端刺激而启动的“紧急逃生通道”。核心特征1、意识分裂现实解离:感到身体或环境“不真实”(如玩游戏时出现“灵魂出窍”般的视角抽离)情感隔离:能描述事件但无法体验对应情绪(如你通
- HarmonyOS TEXT 语音搜索场景学习和总结
harmonyos
在HarmonyOS中实现语音搜索功能时,涉及到麦克风权限的申请、音频数据的采集、编码和传输等多个步骤。以下是对上述代码的详细解析和补充说明:麦克风权限的申请与检查在HarmonyOS中,使用麦克风需要申请ohos.permission.MICROPHONE权限。在代码中,通过GRPermissionsUtils.checkPermissions方法来检查和申请权限。如果权限被授予,则可以继续进行
- 深入学习 DNS 域名解析
dns解析
一、前言在平时工作中相信大家都离不开DNS解析,因为DNS解析是互联网访问的第一步,无论是使用笔记本浏览器访问网络还是打开手机APP的时候,访问网络资源的第一步必然要经过DNS解析流程。二、DNS是什么DNS(域名系统DomainNameSystem),它是一个记录域名和Ip地址相互映射的一个系统,是互联网的“电话簿”,负责将人类可读的域名(如example.com)转换为机器可识别的IP地址(如
- 深度革命:ResNet 如何用 “残差连接“ 颠覆深度学习
安意诚Matrix
机器学习笔记深度学习人工智能
一文快速了解ResNet创新点在深度学习的历史长河中,2015年或许是最具突破性的一年。这一年,微软亚洲研究院的何恺明团队带着名为ResNet(残差网络)的模型横空出世,在ImageNet图像分类竞赛中以3.57%的错误率夺冠,将人类视觉的识别误差(约5.1%)远远甩在身后。更令人震撼的是,ResNet将神经网络的深度推至152层,彻底打破了"深层网络无法训练"的魔咒。这场革命的核心,正是一个简单
- 智能形状匹配技术全解析:从经典算法到深度学习与神经形态计算【超级详细版】
AI筑梦师
计算机视觉算法深度学习人工智能机器学习计算机视觉python
智能形状匹配技术全解析:从经典算法到深度学习与神经形态计算1.引言1.1研究背景在计算机视觉、模式识别、医学影像分析和自动驾驶等领域,形状匹配是核心任务之一。然而,现实世界的形状往往存在可变性(Variability),主要体现在以下几个方面:形变(Deformation):物体可能由于柔性材料、外力作用或生物运动发生非刚性形变。尺度变化(ScaleVariation):目标形状在不同场景下可能大
- C#搭建Json RPC2.0 Server/Client
Flora*.*
rpcc#
写在前面这篇文章写了改,改了写,中间耽搁好长时间,最终还是决定坚持写下来,因为我自己在学习这部分开发时也花了很长时间去理解,所以这篇文章也相当于是对我这部分开发和学习的一个总结,希望它能给你带来帮助。因为本人能力有限,所以文中有些写的不明白或者有错误的地方还请大佬批评指正,我也会不断在项目中进行总结,更新这篇文章,让其更加通俗易懂!背景介绍在MES项目开发中,我们不希望经常改动主程序,但因为不同客
- 基于C语言的数据结构之串——带你熟练掌握串的基本操作!!超级详细!!
Elnaij
数据结构c语言算法
目录前言1.数据结构——串1.1基本知识主串、子串、模式串1.2对几个字符串库函数的简单介绍1.2.1strcmp1.2.2strcpy1.2.3strlen1.2.4strcat1.3串的分类1.3.1静态分配内存的串1.3.2动态分配内存的串2.串的基本操作2.1初始化串2.2输出字符2.3插入子串2.4删除子串2.5取子串操作2.6撤销删除操作结束语前言掌握串之前最好先去学习好顺序表和单链表
- C++与C语言的区别
@haihi
c++c语言开发语言
前言本文主要用C语言和C++做对比来学习C++,便于个人理解。C++包含C语言,是对C语言的扩展,在C++中,支持C语言的语法使用,C++是C语言的超集一、C++与C语言的区别C语言简单高效,适合低级系统编程和硬件相关的开发。C++更加灵活、强大,适合大型项目开发,尤其是需要面向对象、代码复用和复杂数据结构的应用。1.编程范式C语言:C是一种过程式编程语言,主要关注函数和过程。程序是通过一系列函数
- 从C语言开始的C++编程生活(1)
Elnaij
C++基础知识c语言c++
前言本系列文章承接C语言的学习,需要有C语言的基础才能学会哦。第1篇主要讲的是有关于C++的命名空间、输入和输出。C++才起步,都很简单呢!目录前言命名空间namespace基本语法作用使用命名空间域作用限定符::基本语法usingnamespace命名空间域名基本语法作用using命名空间域名::变量名基本语法作用C++的输入和输出“>”流提取符基本语法代码解释命名空间namespace基本语法
- 【一起学Rust | Tauri2.0框架】基于 Rust 与 Tauri 2.0 框架实现跨平台二维码扫描应用
金枝玉叶9
程序员知识储备1程序员知识储备2程序员知识储备3rust开发语言后端
《一起学Rust|Tauri2.0框架》是一个结合Rust语言与Tauri框架开发跨平台应用的教程。Tauri2.0是一个非常适合构建跨平台桌面应用的框架,它让开发者可以使用Web技术(如HTML、CSS、JavaScript)来创建前端,同时利用Rust编写后端逻辑,确保应用运行高效且轻量。在这个教程中,开发者可以学习如何使用Rust与Tauri2.0框架实现一个跨平台二维码扫描应用。具体步骤可
- SAP-ABAP:SAP采购模块(MM-PUR)学习指南
爱喝水的鱼丶
VIP详情查看专栏SAP业务学习捷径SAP-ABAP开发基础详解ABAPSAPERP运维SAP采购业务学习
Ⅰ.模块全景图采购管理需求计划供应商协同采购执行财务集成采购申请/MRP供应商评估/合同订单/收货/发票应付账款Ⅱ.核心配置矩阵2.1组织结构配置对象事务码配置关系业务影响示例值采购组织OX01分配公司代码跨法人采购1000-US工厂OX18链接采购组织库存管理2000-CH采购组OME9指定采购专家责任划分PG01-IT采购2.2单据类型配置单据类型配置路径关键字段审批策略应用场景标准采购订单M
- 【含文档+PPT+源码】基于微信小程序农家乐美食餐厅预约推广系统
编程毕设
微信小程序美食小程序
项目介绍本课程演示的是一款基于微信小程序农家乐美食餐厅预约推广系统,主要针对计算机相关专业的正在做毕设的学生与需要项目实战练习的Java学习者。1.包含:项目源码、项目文档、数据库脚本、软件工具等所有资料2.带你从零开始部署运行本套系统3.该项目附带的源码资料可作为毕设使用该系统功能架构图如下:技术栈说明技术栈:后端:SpringBoot+Vue+ElementUI(后端是前后端分离的)前端:Un
- Python 模拟鼠标轨迹算法
a485240
鼠标轨迹计算机外设
一.鼠标轨迹模拟简介传统的鼠标轨迹模拟依赖于简单的数学模型,如直线或曲线路径。然而,这种方法难以捕捉到人类操作的复杂性和多样性。AI大模型的出现,使得能够通过深度学习技术,学习并模拟更自然的鼠标移动行为。二.鼠标轨迹算法实现AI大模型通过学习大量的人类鼠标操作数据,能够识别和模拟出自然且具有个体差异的鼠标轨迹。以下是实现这一技术的关键步骤:数据收集:收集不同玩家在各种游戏环境中的鼠标操作数据,包括
- Apache Storm:实时数据处理的闪电战
Aaron_945
Javaapachestorm大数据
文章目录ApacheStorm原理拓扑结构数据流处理容错机制官网链接基础使用安装与配置编写拓扑提交与运行高级使用状态管理窗口操作多语言支持优点高吞吐量低延迟可扩展性容错性总结ApacheStorm是一个开源的分布式实时计算系统,它允许你以极高的吞吐量处理无界数据流。Storm被广泛用于实时分析、在线机器学习、连续计算等多种场景。本文将深入探讨ApacheStorm的原理、基础使用、高级特性及其优点
- 深入自制Shell:解锁Linux进程控制的实践密码
A charmer
Linuxlinux服务器运维
亲爱的读者朋友们,此文开启知识盛宴与思想碰撞。快来参与讨论,点赞、收藏⭐、分享,共创活力社区。在上一篇文章《Linux进程控制:创建、终止、等待与程序替换全解析》中,我们系统地学习了Linux进程控制相关知识,从进程的创建、终止,到进程等待与程序替换,每一个环节都为我们深入理解Linux系统的运行机制提供了关键线索。而现在,我们将沿着这条知识脉络,深入到自主Shell命令行解释器的实现领域,进一步
- 【AI大模型前沿】浙大携手阿里推出HealthGPT:医学视觉语言大模型助力智能医疗新突破
寻道AI小兵
AI大模型前沿技术追踪人工智能语言模型AIGC
系列篇章No.文章1【AI大模型前沿】深度剖析瑞智病理大模型RuiPath:如何革新癌症病理诊断技术2【AI大模型前沿】清华大学CLAMP-3:多模态技术引领音乐检索新潮流3【AI大模型前沿】浙大携手阿里推出HealthGPT:医学视觉语言大模型助力智能医疗新突破目录系列篇章前言一、项目概述二、技术原理(一)异构低秩适应(H-LoRA)(二)分层视觉感知(HVP)(三)三阶段学习策略(TLS)三、
- Python零基础通关教程(二):列表、字典与函数详解(附生活化案例)
中意可口可乐
python开发语言windowspython列表
一、前情回顾与学习路线第一篇重点复习:✅变量与数据类型✅条件判断✅循环结构本篇新知识地图:graphLRA[基础语法]-->B[列表]A-->C[字典]B-->D[函数进阶]C-->D二、列表(List):你的数据收纳盒1.列表是什么?现实比喻:像超市购物车,可以随时添加/取出商品代码定义:用方括号[]包裹,元素用逗号分隔#创建购物车列表cart=["苹果","牛奶","面包"]print("购物
- 【含文档+PPT+源码】基于SpringBoot+vue的疫苗接种系统的设计与实现
小咕聊编程
springboot后端java
项目介绍本课程演示的是一款基于SpringBoot+vue的疫苗接种系统的设计与实现,主要针对计算机相关专业的正在做毕设的学生与需要项目实战练习的Java学习者。1.包含:项目源码、项目文档、数据库脚本、软件工具等所有资料2.带你从零开始部署运行本套系统3.该项目附带的源码资料可作为毕设使用疫苗接种系统包括管理员登录、用户管理、疫苗信息管理、疫苗接种管理、接种管理、疫苗百科知识管理、消息通知管理、
- React学习笔记20
充气大锤
React学习笔记学习笔记javascript前端算法开发语言react.js
一、React.forward1.1、作用通过ref暴露子组件的DOM1.2、场景说明1.3、语法实现//子组件constInput=forwardRef((props,ref)=>{return})//父组件functionfather_component(){constinputRef=useRef(null)constfocus=(ref)=>{ref.current.focus()}ret
- 知识蒸馏:从软标签压缩到推理能力迁移的工程实践(基于教师-学生模型的高效压缩技术与DeepSeek合成数据创新)
AI仙人掌
人工智能AI人工智能深度学习语言模型机器学习
知识蒸馏通过迁移教师模型(复杂)的知识到学生模型(轻量),实现模型压缩与性能平衡。核心在于利用教师模型的软标签(概率分布)替代独热编码标签,学生模型不仅学习到教师模型输出数据的类别信息,还能够捕捉到类别之间的相似性和关系,从而提升其泛化能力核心概念知识蒸馏的核心目标是实现从教师模型到学生模型的知识迁移。在实际应用中,无论是大规模语言模型(LLMs)还是其他类型的神经网络模型,都会通过softmax
- 【迁移学习入门之域适应的背景、理论与方法】进一步理解迁移学习啦?
985小水博一枚呀
深度学习学习笔记迁移学习人工智能机器学习域适应
【迁移学习入门之域适应的背景、理论与方法】进一步理解迁移学习啦?【迁移学习入门之域适应的背景、理论与方法】进一步理解迁移学习啦?文章目录【迁移学习入门之域适应的背景、理论与方法】进一步理解迁移学习啦?1.背景介绍2.理论基础2.1分布差异(DomainShift)2.2迁移学习理论(TransferLearningTheory)2.3领域不变特征(Domain-invariantFeatures)
- 【论文精读】SCINet-基于降采样和交互学习的时序卷积模型
打酱油的葫芦娃
时序预测算法时序预测SCINetTCN
《SCINet:TimeSeriesModelingandForecastingwithSampleConvolutionandInteraction》的作者团队来自香港中文大学,发表在NeurIPS2022会议上。动机该论文的出发点是观察到时间序列数据具有独特的属性:即使在将时间序列下采样成两个子序列后,时间关系(例如数据的趋势和季节性成分)也基本上得以保留。这个观察启发了作者去设计一种新型的神
- rust的指针作为函数返回值是直接传递,还是先销毁后创建?
wudixiaotie
返回值
这是我自己想到的问题,结果去知呼提问,还没等别人回答, 我自己就想到方法实验了。。
fn main() {
let mut a = 34;
println!("a's addr:{:p}", &a);
let p = &mut a;
println!("p's addr:{:p}", &a
- java编程思想 -- 数据的初始化
百合不是茶
java数据的初始化
1.使用构造器确保数据初始化
/*
*在ReckInitDemo类中创建Reck的对象
*/
public class ReckInitDemo {
public static void main(String[] args) {
//创建Reck对象
new Reck();
}
}
- [航天与宇宙]为什么发射和回收航天器有档期
comsci
地球的大气层中有一个时空屏蔽层,这个层次会不定时的出现,如果该时空屏蔽层出现,那么将导致外层空间进入的任何物体被摧毁,而从地面发射到太空的飞船也将被摧毁...
所以,航天发射和飞船回收都需要等待这个时空屏蔽层消失之后,再进行
&
- linux下批量替换文件内容
商人shang
linux替换
1、网络上现成的资料
格式: sed -i "s/查找字段/替换字段/g" `grep 查找字段 -rl 路径`
linux sed 批量替换多个文件中的字符串
sed -i "s/oldstring/newstring/g" `grep oldstring -rl yourdir`
例如:替换/home下所有文件中的www.admi
- 网页在线天气预报
oloz
天气预报
网页在线调用天气预报
<%@ page language="java" contentType="text/html; charset=utf-8"
pageEncoding="utf-8"%>
<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transit
- SpringMVC和Struts2比较
杨白白
springMVC
1. 入口
spring mvc的入口是servlet,而struts2是filter(这里要指出,filter和servlet是不同的。以前认为filter是servlet的一种特殊),这样就导致了二者的机制不同,这里就牵涉到servlet和filter的区别了。
参见:http://blog.csdn.net/zs15932616453/article/details/8832343
2
- refuse copy, lazy girl!
小桔子
copy
妹妹坐船头啊啊啊啊!都打算一点点琢磨呢。文字编辑也写了基本功能了。。今天查资料,结果查到了人家写得完完整整的。我清楚的认识到:
1.那是我自己觉得写不出的高度
2.如果直接拿来用,很快就能解决问题
3.然后就是抄咩~~
4.肿么可以这样子,都不想写了今儿个,留着作参考吧!拒绝大抄特抄,慢慢一点点写!
- apache与php整合
aichenglong
php apache web
一 apache web服务器
1 apeche web服务器的安装
1)下载Apache web服务器
2)配置域名(如果需要使用要在DNS上注册)
3)测试安装访问http://localhost/验证是否安装成功
2 apache管理
1)service.msc进行图形化管理
2)命令管理,配
- Maven常用内置变量
AILIKES
maven
Built-in properties
${basedir} represents the directory containing pom.xml
${version} equivalent to ${project.version} (deprecated: ${pom.version})
Pom/Project properties
Al
- java的类和对象
百合不是茶
JAVA面向对象 类 对象
java中的类:
java是面向对象的语言,解决问题的核心就是将问题看成是一个类,使用类来解决
java使用 class 类名 来创建类 ,在Java中类名要求和构造方法,Java的文件名是一样的
创建一个A类:
class A{
}
java中的类:将某两个事物有联系的属性包装在一个类中,再通
- JS控制页面输入框为只读
bijian1013
JavaScript
在WEB应用开发当中,增、删除、改、查功能必不可少,为了减少以后维护的工作量,我们一般都只做一份页面,通过传入的参数控制其是新增、修改或者查看。而修改时需将待修改的信息从后台取到并显示出来,实际上就是查看的过程,唯一的区别是修改时,页面上所有的信息能修改,而查看页面上的信息不能修改。因此完全可以将其合并,但通过前端JS将查看页面的所有信息控制为只读,在信息量非常大时,就比较麻烦。
- AngularJS与服务器交互
bijian1013
JavaScriptAngularJS$http
对于AJAX应用(使用XMLHttpRequests)来说,向服务器发起请求的传统方式是:获取一个XMLHttpRequest对象的引用、发起请求、读取响应、检查状态码,最后处理服务端的响应。整个过程示例如下:
var xmlhttp = new XMLHttpRequest();
xmlhttp.onreadystatechange
- [Maven学习笔记八]Maven常用插件应用
bit1129
maven
常用插件及其用法位于:http://maven.apache.org/plugins/
1. Jetty server plugin
2. Dependency copy plugin
3. Surefire Test plugin
4. Uber jar plugin
1. Jetty Pl
- 【Hive六】Hive用户自定义函数(UDF)
bit1129
自定义函数
1. 什么是Hive UDF
Hive是基于Hadoop中的MapReduce,提供HQL查询的数据仓库。Hive是一个很开放的系统,很多内容都支持用户定制,包括:
文件格式:Text File,Sequence File
内存中的数据格式: Java Integer/String, Hadoop IntWritable/Text
用户提供的 map/reduce 脚本:不管什么
- 杀掉nginx进程后丢失nginx.pid,如何重新启动nginx
ronin47
nginx 重启 pid丢失
nginx进程被意外关闭,使用nginx -s reload重启时报如下错误:nginx: [error] open() “/var/run/nginx.pid” failed (2: No such file or directory)这是因为nginx进程被杀死后pid丢失了,下一次再开启nginx -s reload时无法启动解决办法:nginx -s reload 只是用来告诉运行中的ng
- UI设计中我们为什么需要设计动效
brotherlamp
UIui教程ui视频ui资料ui自学
随着国际大品牌苹果和谷歌的引领,最近越来越多的国内公司开始关注动效设计了,越来越多的团队已经意识到动效在产品用户体验中的重要性了,更多的UI设计师们也开始投身动效设计领域。
但是说到底,我们到底为什么需要动效设计?或者说我们到底需要什么样的动效?做动效设计也有段时间了,于是尝试用一些案例,从产品本身出发来说说我所思考的动效设计。
一、加强体验舒适度
嗯,就是让用户更加爽更加爽的用你的产品。
- Spring中JdbcDaoSupport的DataSource注入问题
bylijinnan
javaspring
参考以下两篇文章:
http://www.mkyong.com/spring/spring-jdbctemplate-jdbcdaosupport-examples/
http://stackoverflow.com/questions/4762229/spring-ldap-invoking-setter-methods-in-beans-configuration
Sprin
- 数据库连接池的工作原理
chicony
数据库连接池
随着信息技术的高速发展与广泛应用,数据库技术在信息技术领域中的位置越来越重要,尤其是网络应用和电子商务的迅速发展,都需要数据库技术支持动 态Web站点的运行,而传统的开发模式是:首先在主程序(如Servlet、Beans)中建立数据库连接;然后进行SQL操作,对数据库中的对象进行查 询、修改和删除等操作;最后断开数据库连接。使用这种开发模式,对
- java 关键字
CrazyMizzz
java
关键字是事先定义的,有特别意义的标识符,有时又叫保留字。对于保留字,用户只能按照系统规定的方式使用,不能自行定义。
Java中的关键字按功能主要可以分为以下几类:
(1)访问修饰符
public,private,protected
p
- Hive中的排序语法
daizj
排序hiveorder byDISTRIBUTE BYsort by
Hive中的排序语法 2014.06.22 ORDER BY
hive中的ORDER BY语句和关系数据库中的sql语法相似。他会对查询结果做全局排序,这意味着所有的数据会传送到一个Reduce任务上,这样会导致在大数量的情况下,花费大量时间。
与数据库中 ORDER BY 的区别在于在hive.mapred.mode = strict模式下,必须指定 limit 否则执行会报错。
- 单态设计模式
dcj3sjt126com
设计模式
单例模式(Singleton)用于为一个类生成一个唯一的对象。最常用的地方是数据库连接。 使用单例模式生成一个对象后,该对象可以被其它众多对象所使用。
<?phpclass Example{ // 保存类实例在此属性中 private static&
- svn locked
dcj3sjt126com
Lock
post-commit hook failed (exit code 1) with output:
svn: E155004: Working copy 'D:\xx\xxx' locked
svn: E200031: sqlite: attempt to write a readonly database
svn: E200031: sqlite: attempt to write a
- ARM寄存器学习
e200702084
数据结构C++cC#F#
无论是学习哪一种处理器,首先需要明确的就是这种处理器的寄存器以及工作模式。
ARM有37个寄存器,其中31个通用寄存器,6个状态寄存器。
1、不分组寄存器(R0-R7)
不分组也就是说说,在所有的处理器模式下指的都时同一物理寄存器。在异常中断造成处理器模式切换时,由于不同的处理器模式使用一个名字相同的物理寄存器,就是
- 常用编码资料
gengzg
编码
List<UserInfo> list=GetUserS.GetUserList(11);
String json=JSON.toJSONString(list);
HashMap<Object,Object> hs=new HashMap<Object, Object>();
for(int i=0;i<10;i++)
{
- 进程 vs. 线程
hongtoushizi
线程linux进程
我们介绍了多进程和多线程,这是实现多任务最常用的两种方式。现在,我们来讨论一下这两种方式的优缺点。
首先,要实现多任务,通常我们会设计Master-Worker模式,Master负责分配任务,Worker负责执行任务,因此,多任务环境下,通常是一个Master,多个Worker。
如果用多进程实现Master-Worker,主进程就是Master,其他进程就是Worker。
如果用多线程实现
- Linux定时Job:crontab -e 与 /etc/crontab 的区别
Josh_Persistence
linuxcrontab
一、linux中的crotab中的指定的时间只有5个部分:* * * * *
分别表示:分钟,小时,日,月,星期,具体说来:
第一段 代表分钟 0—59
第二段 代表小时 0—23
第三段 代表日期 1—31
第四段 代表月份 1—12
第五段 代表星期几,0代表星期日 0—6
如:
*/1 * * * * 每分钟执行一次。
*
- KMP算法详解
hm4123660
数据结构C++算法字符串KMP
字符串模式匹配我们相信大家都有遇过,然而我们也习惯用简单匹配法(即Brute-Force算法),其基本思路就是一个个逐一对比下去,这也是我们大家熟知的方法,然而这种算法的效率并不高,但利于理解。
假设主串s="ababcabcacbab",模式串为t="
- 枚举类型的单例模式
zhb8015
单例模式
E.编写一个包含单个元素的枚举类型[极推荐]。代码如下:
public enum MaYun {himself; //定义一个枚举的元素,就代表MaYun的一个实例private String anotherField;MaYun() {//MaYun诞生要做的事情//这个方法也可以去掉。将构造时候需要做的事情放在instance赋值的时候:/** himself = MaYun() {*
- Kafka+Storm+HDFS
ssydxa219
storm
cd /myhome/usr/stormbin/storm nimbus &bin/storm supervisor &bin/storm ui &Kafka+Storm+HDFS整合实践kafka_2.9.2-0.8.1.1.tgzapache-storm-0.9.2-incubating.tar.gzKafka安装配置我们使用3台机器搭建Kafk
- Java获取本地服务器的IP
中华好儿孙
javaWeb获取服务器ip地址
System.out.println("getRequestURL:"+request.getRequestURL());
System.out.println("getLocalAddr:"+request.getLocalAddr());
System.out.println("getLocalPort:&quo