- Python中的【迭代器】和【生成器】
Matthew575
Pythonpython开发语言
Python是一门被多层语法糖包装的编程语言,用户使用起来容易上手。但若不了解其底层机制,就无法精通其语言。最近研究了Python中的迭代器和生成器迭代器迭代是访问集合元素的一种方式,在Python中,迭代是通过for…in…语句来完成的。在Python中,可直接作用于for循环的对象都称为可迭代对象(Iterable),而可以作用于for循环的数据类型有以下两类:一类是集合数据类型,比如常见的s
- JavaScript简介、如何在HTML中使用JavaScript以及JavaScript基本概念
v.15889726201
javascripthtmludp
一、JavaScript简介一个完整的JavaScript实现应该由ECMAScript(核心)、DOM(文档对象模型)、BOM(浏览器对象模型)三个不同的部分组成;ECMAScript提供核心语言;DOM(DocumentObjectModel)把整个页面映射为一个多层节点结构,是针对XML但经过扩展用于HTML的应用程序编程接口(API),借助DOM提供的API,开发人员可以轻松自如地删除、添
- 超实用的Python深度学习教程 - 基于TensorFlow和Keras框架(含实例及完整代码)
AI_DL_CODE
人工智能python深度学习tensorflow
一、深度学习概述(一)深度学习的定义与发展历程深度学习在当今的科技领域占据着极为重要的地位。它是人工智能的一个重要分支,其定义为通过构建具有很多层的神经网络模型,让计算机自动从大量数据中学习复杂模式的一种技术。深度学习的发展历程可谓波澜壮阔,早期它源于对人工神经网络的研究,从简单的感知机模型开始。在发展初期,由于计算资源的限制以及数据量的不足等因素,发展较为缓慢。然而,随着计算机技术的飞速发展,尤
- 分层架构设计概念
祈遇&
java
技术架构分层设计 系统分层设计是一种设计思想(分而治之),是让每层对象都有一个独立职责,再让多层对象协同(耦合)完成一个完整的功能。这样做可以更好提高系统可扩展性,但同时也会增加系统整体运维的难度springBoot技术简介和特性 SpringBoot是Java软件开发框架(很多人现在把它理解为一个脚手架),其设计目的是用来简化Spring项目的初始搭建以及开发过程。该框架使用了特定的注解方式
- vue3+elementPlus之后台管理系统(从0到1)(day1-项目主体搭建)
沐暖沐
vue.js前端javascript
vue3官方文档:https://cn.vuejs.org/guide/introduction.html1、项目创建确保电脑已安装node查看命令:node-v进入项目目录,创建项目npminitvue@latestNeedtoinstallthefollowingpackages:
[email protected]?(y)yVue.js-TheProgressiveJav
- 定价策略详解
小小搬运工40
定价数据分析产品运营数据挖掘
常用定价策略简述渗透定价:快速吸引客户,适用于新产品进入市场,但低价可能导致利润率低。撇脂定价:获取高额利润,适用于技术含量高的产品,但高价可能限制市场规模。心理定价:利用客户心理反应,增加购买意愿,但过度使用可能导致客户信任危机。分段定价:满足不同客户群体需求,适用于多层次服务,但需要精确的市场细分。会员定价:增强客户忠诚度,适用于订阅服务,但需确保会员权益的吸引力。捆绑定价:通过组合销售增加客
- Selenium 浏览器操作与使用技巧——详细解析(Java版)
Future_yzx
seleniumjava测试工具
目录一、浏览器及窗口操作二、键盘与鼠标操作三、勾选复选框四、多层框架/窗口定位五、操作下拉框六、上传文件操作七、处理弹窗与alert八、处理动态元素九、使用Selenium进行网站监控前言Selenium是一款非常强大的Web自动化测试工具,能够帮助开发者与测试人员进行浏览器的自动化操作。通过Selenium,您不仅可以进行传统的自动化测试,还可以实现网站监控、动态元素处理、用户交互等高级功能。本
- redis的数据结构——跳表(Skiplist)
半桶水专家
Redisredis数据结构skiplist
跳表(Skiplist)是一种用于有序数据存储的高效数据结构,它在Redis中用于实现有序集合(SortedSet,zset)的底层存储。当有序集合中的数据较多时,Redis会选择使用跳表来存储元素,以便在保持数据有序的同时提供高效的插入、删除、查找操作。跳表的基本结构跳表是一种多层链表结构,它通过在基本有序链表的基础上添加多层索引,来加速查找的速度。跳表的每一层都是一个链表,底层(Level0)
- 【设计模式-行为型】迭代器模式
博一波
设计模式迭代器模式
一、什么是迭代器模式迭代器模式,顾名思义,同样的为了让大家更加了解啥是迭代器。我们通过电影情结来说明,不知道大家有没有看过一个剧烧脑的科幻大片--《盗梦空间》。影片讲述了由造梦师(莱昂纳多·迪卡普里奥扮演的)带领特工团队进入他人梦境,从潜意识中盗取机密并重塑他人梦境的故事。其中个东西叫做造梦机,无论是谁(稍微不太准确),加以培训(使用造梦机)都可以进入多层梦境。这就是个典型的迭代器模式。盗梦空间中
- YOLOv10涨点改进:特征融合创新 | 多层次特征融合(SDI),小目标涨点明显,| UNet v2,比UNet显存占用更少、参数更少
AI小怪兽
YOLOv10魔术师YOLO目标检测算法人工智能目标跟踪
本文独家改进:多层次特征融合(SDI),能够显著提升不同尺度和小目标的识别率如何引入到YOLOv10:1)替代原始的Concat;改进结构图如下:《YOLOv10魔术师专栏》将从以下各个方向进行创新:【原创自研模块】【多组合点优化】【注意力机制】【卷积魔改】【block&多尺度融合结合】【损失&IOU优化】【上下采样优化】【小目标性能提升】【前沿论文分享】【训练实战篇】订阅者通过添加WX:AI_C
- YOLO11涨点优化:特征融合创新 | 多层次特征融合(SDI),小目标涨点明显| UNet v2,比UNet显存占用更少、参数更少
AI小怪兽
YOLO11魔术师深度学习目标检测计算机视觉目标跟踪神经网络python
本文独家改进:多层次特征融合(SDI),能够显著提升不同尺度和小目标的识别率如何引入到YOLO11:1)替代原始的Concat;改进结构图如下:《YOLOv11魔术师专栏》将从以下各个方向进行创新:【原创自研模块】【多组合点优化】【注意力机制】【卷积魔改】【block&多尺度融合结合】【损失&IOU优化】【上下采样优化】【小目标性能提升】【前沿论文分享】【训练实战篇】订阅者通过添加WX:AI_CV
- 携手上海证券,共同见证市场活跃背景下交易服务新趋势
金融
近日,上海证券与非凸科技联合举办了“市场活跃背景下私募机构发展和券商服务新趋势”主题活动,与管理人、资方共同探讨当前市场环境下私募机构如何把握机遇、应对挑战,以及券商服务如何实现转型优化,以更好地满足投资者需求。上海证券始终坚持“以客户为中心”,近年实现了以“专业策略交易终端+智能算法交易服务+自研一体化交易平台”为核心的多元化、多层次专业交易服务。会上,上海证券研究所固收首席张老师深入分析了当前
- 【Validator】字段验证器struct与多层级验证,go案例
{⌐■_■}
golang信息可视化开发语言
标签用法总结表标签功能代码实例required字段必填Namestring\v:“required”``alphaunicode验证字段是否只包含字母和Unicode字符Namestring\v:“alphaunicode”``gte验证字段值是否大于等于指定值Ageuint8\v:“gte=10”``lte验证字段值是否小于等于指定值Ageuint8\v:“lte=130”``e164验证电话号
- 神经网络|(三)线性回归基础知识
西猫雷婶
神经网络线性回归机器学习
【1】引言前序学习进程中,已经对简单神经元的工作模式有所了解,这种二元分类的工作机制,进一步使用sigmoid()函数进行了平滑表达。相关学习链接为:神经网络|(一)加权平均法,感知机和神经元-CSDN博客神经网络|(二)sigmoid神经元函数-CSDN博客实际上,上述表达模型的一个基本原则是:元素和对应的权重,线性相乘后再和阈值开关作对比,元素的综合影响在本质上是一个线性函数,类似于y=wx+
- Windows Server 2022 中文版、英文版下载 (2024 年 12 月更新)
windows-server
WindowsServer2022中文版、英文版下载(2024年12月更新)WindowsServer2022x64,Version21H2(updatedDec2024)请访问原文链接:https://sysin.org/blog/windows-server-2022/查看最新版。原创作品,转载请保留出处。作者主页:sysin.orgWindowsServer2022采用先进的多层安全机制、A
- # AI计算模式 神经网络模型 深度神经网络 多层感知机 卷积神经网络 循环神经网络 长短期记忆网络 图像识别、语音识别、自然语言 轻量化模型和模型压缩 大模型分布式并行
EwenWanW
AGI人工智能神经网络dnn
AI计算模式AI技术发展至今,主流的模型是深度神经网络模型。近20年来,神经网络模型经过多样化的发展,模型总体变得越来越复杂和庞大,对硬件设备的计算速度、存储能力、通信速度的要求越来越高。尽管学者已经提出了许多方法优化模型结构,降低模型的参数量,但是伴随着人们对AI能力的要求越来越高,模型变得更大是不可避免的。原先单CPU可进行模型的训练与推理,如今需要使用GPU、TPU等设备,并通过分布式并行的
- 多层感知机和神经网络的区别_情感分析之多层全连接神经网络
weixin_39653766
多层感知机和神经网络的区别
全连接神经网络全连接神经网络是一种最基本的神经网络结构,英文为FullConnection,所以一般简称FC。FC的准则很简单:神经网络中除输入层之外的每个节点都和上一层的所有节点有连接。上图是一个双隐层的前馈全连接神经网络,或者叫多层感知机(MLP)。它的每个隐层都是全连接层。它的每一个单元叫神经元。多层感知机在单层神经网络的基础上引入了一到多个隐藏层(hiddenlayer)。隐藏层位于输入层
- 深入详解神经网络的基础知识、工作原理以及应用【一】
猿享天开
人工智能基础知识学习深度学习神经网络人工智能
目录引言1.神经网络基础1.1感知器模型1.2多层感知器(MLP)示例:2.前馈神经网络(FeedforwardNeuralNetworks,FFNN)2.1结构与特点2.2训练过程2.3优化方法3.卷积神经网络(CNN)3.1基本概念3.2层类型3.3网络架构3.4应用领域3.5示例代码示例描述:4.循环神经网络(RNN)4.1基本概念4.2RNN结构4.3应用领域4.4示例代码示例描述:5.深
- 使用 Rebuff 检测和防御 Prompt Injection 攻击
azzxcvhj
promptpython
技术背景介绍随着生成式AI的逐渐普及,PromptInjection(PI)攻击逐渐成为一种严重的安全威胁。这种攻击方式利用模型对输入过度信赖的特性,精心设计输入内容,以误导AI系统执行不当的操作。例如,攻击者可以注入恶意SQL语句或绕过原有的逻辑规则,给系统安全带来极大隐患。本文将重点介绍开源工具Rebuff,它是一种自硬化的PromptInjection检测系统,旨在通过多层次防御机制保护AI
- 多级缓存 JVM进程缓存
Rverdoser
缓存jvm
在Java虚拟机(JVM)中,多级缓存通常指的是JVM内部的多层缓存机制,包括指令缓存、数据缓存等,这些缓存都是为了提高程序运行效率。在Java中,JVM的多级缓存是自动管理的,不需要程序员手动干预。但是,如果你想要监控或调试这些缓存的行为,可以使用一些JVM提供的工具和选项,如JMC(JavaMissionControl)、JVisualVM、JFR(JavaFlightRecorder)等。如
- 机器学习算法(八):基于BP神经网络的乳腺癌的分类预测
墨枣
机器学习算法神经网络分类人工智能
机器学习算法(八):基于BP神经网络的乳腺癌的分类预测本项目链接:https://www.heywhale.com/home/column/64141d6b1c8c8b518ba97dcc1.算法简介和应用1.1算法简介BP(BackPropagation)网络是1986年由Rumelhart和McCelland为首的科学家小组提出,是一种按误差逆传播算法训练的多层前馈网络,是目前应用最广泛的神经
- C语言的那点事第六篇:数据的“集体宿舍”数组,数据的“导航仪”指针与灵活的租房服务动态内存分配
暮雨哀尘
C语言的那点事算法c语言青少年编程开发语言蓝桥杯
1.数组:数据的“集体宿舍”数组是一种数据结构,用来存储一组相同类型的数据。想象一下,数组就像是一排排整齐的宿舍房间,每个房间都有一个编号(索引),而里面住着的数据就是“室友”。类型描述示例代码输出一维数组单层宿舍,存储一组相同类型的数据,索引从0开始。intdorm[5]={1,2,3,4,5};dorm[0]=1,dorm[1]=2,...,dorm[4]=5多维数组多层宿舍,需要多个索引访问
- MySQL中的嵌套查询
阿乾之铭
MySQL数据库sqlmysql
1.嵌套查询的定义嵌套查询指在一个查询语句的某个部分嵌入一个子查询。嵌套查询的执行过程遵循“先子查询、后外层查询”的逻辑。首先,子查询执行并返回一个结果集,可能是一个值、一行或多行数据。接着,外层查询使用子查询的结果继续对数据进行筛选或处理。通过这种方式,嵌套查询可以处理更复杂的逻辑,如多层条件过滤、数据对比等。子查询:首先执行,返回符合条件的结果。外层查询:利用子查询返回的结果进行筛选或其他逻辑
- 我国的金融组织体系,还有各大金融机构的分类,金融行业的组织
ademen
金融业务金融大数据人工智能
中国金融组织体系介绍中国金融组织体系是一个复杂而多层次的系统,涵盖了各种类型的金融机构和监管机构。以下是关于中国金融组织体系的详细介绍,包括一行三会等金融监管机构,各大金融机构的分类、涉及的银行以及行业组织。(一)货币当局1.中国人民银行:作为国家干预和调控国民经济发展的重要工具,承担着制定并执行国家货币信用政策、管理国家货币发行、维护金融稳定等多项职责。2.国家外汇管理局(部委管理的国家局,具体
- 深度学习模型开发文档
Ares代码行者
深度学习
深度学习模型开发文档1.简介2.深度学习模型开发流程3.数据准备3.1数据加载3.2数据可视化4.构建卷积神经网络(CNN)5.模型训练5.1定义损失函数和优化器5.2训练过程6.模型评估与优化6.1模型评估6.2超参数调优7.模型部署8.总结参考资料1.简介深度学习是人工智能的一个分支,利用多层神经网络从数据中提取特征并进行学习。它被广泛应用于图像识别、自然语言处理、语音识别等领域。本文将以构建
- 通用人工智能的多层次提示词架构
AI天才研究院
计算机软件编程原理与应用实践大数据AI人工智能javapythonjavascriptkotlingolang架构人工智能大厂程序员硅基计算碳基计算认知计算生物计算深度学习神经网络大数据AIGCAGILLM系统架构设计软件哲学Agent程序员实现财富自由
通用人工智能的多层次提示词架构关键词通用人工智能(AGI),多层提示词架构,人工智能设计原则,算法原理,系统架构设计,应用案例摘要本文将深入探讨通用人工智能(AGI)的多层次提示词架构,阐述其背景、核心概念、设计原则和实现方法。我们将逐步分析这一架构在不同领域的应用,并展望其未来的发展方向。通过本文,读者将了解如何构建能够模拟人类智能的多层次提示词系统,并思考其在实际应用中的潜力与挑战。目录第一部
- Python中实现多层感知机(MLP)的深度学习模型
Echo_Wish
Python笔记从零开始学Python人工智能python深度学习开发语言
深度学习已经成为机器学习领域的一个热门话题,而多层感知机(MLP)是最基础的深度学习模型之一。在这篇教程中,我将向你展示如何使用Python来实现一个简单的MLP模型。什么是多层感知机(MLP)?多层感知机(MLP)是一种前馈神经网络,它包含一个输入层、一个或多个隐藏层以及一个输出层。每个层都由一系列的神经元组成,神经元之间通过权重连接。MLP能够学习输入数据的非线性特征,因此在复杂问题的建模中非
- 深度学习基础18(多层感知机代码实现)
NDNPOMDFLR
深度学习深度学习python经验分享人工智能神经网络
多层感知机的从零开始实现现在自己实现一个多层感知机。为了与之前softmax回归获得的结果进行比较,将继续使用Fashion-MNIST图像分类数据集importtorchfromtorchimportnnfromd2limporttorchasd2lbatch_size=256train_iter,test_iter=d2l.load_data_fashion_mnist(batch_size)
- BP神经网络及其Python和MATLAB实现预测
陈辰学长
神经网络pythonmatlab
BP神经网络及其Python和MATLAB实现预测引言BP神经网络(BackPropagationNeuralNetwork),即反向传播神经网络,是一种通过反向传播算法进行监督学习的多层前馈网络。这种网络能够通过不断地调整和改变神经元的连接权重,达到对特定任务的学习和优化。由于其高度的灵活性和适应性,BP神经网络在模式识别、函数逼近、优化问题等多个领域有着广泛的应用。本文将详细介绍BP神经网络的
- HarmonyOS Next企业级设备认证解决方案:基于Device Certificate Kit的多层级身份验证
SameX-4869
harmonyosphp华为
本文旨在深入探讨华为鸿蒙HarmonyOSNext系统(截止目前API12)的技术细节,基于实际开发实践进行总结。主要作为技术分享与交流载体,难免错漏,欢迎各位同仁提出宝贵意见和问题,以便共同进步。本文为原创内容,任何形式的转载必须注明出处及原作者。在企业数字化转型的浪潮中,大量设备接入企业网络,保障设备的合法性和安全性成为了至关重要的任务。基于华为鸿蒙HarmonyOSNext系统,利用Devi
- Java常用排序算法/程序员必须掌握的8大排序算法
cugfy
java
分类:
1)插入排序(直接插入排序、希尔排序)
2)交换排序(冒泡排序、快速排序)
3)选择排序(直接选择排序、堆排序)
4)归并排序
5)分配排序(基数排序)
所需辅助空间最多:归并排序
所需辅助空间最少:堆排序
平均速度最快:快速排序
不稳定:快速排序,希尔排序,堆排序。
先来看看8种排序之间的关系:
1.直接插入排序
(1
- 【Spark102】Spark存储模块BlockManager剖析
bit1129
manager
Spark围绕着BlockManager构建了存储模块,包括RDD,Shuffle,Broadcast的存储都使用了BlockManager。而BlockManager在实现上是一个针对每个应用的Master/Executor结构,即Driver上BlockManager充当了Master角色,而各个Slave上(具体到应用范围,就是Executor)的BlockManager充当了Slave角色
- linux 查看端口被占用情况详解
daizj
linux端口占用netstatlsof
经常在启动一个程序会碰到端口被占用,这里讲一下怎么查看端口是否被占用,及哪个程序占用,怎么Kill掉已占用端口的程序
1、lsof -i:port
port为端口号
[root@slave /data/spark-1.4.0-bin-cdh4]# lsof -i:8080
COMMAND PID USER FD TY
- Hosts文件使用
周凡杨
hostslocahost
一切都要从localhost说起,经常在tomcat容器起动后,访问页面时输入http://localhost:8088/index.jsp,大家都知道localhost代表本机地址,如果本机IP是10.10.134.21,那就相当于http://10.10.134.21:8088/index.jsp,有时候也会看到http: 127.0.0.1:
- java excel工具
g21121
Java excel
直接上代码,一看就懂,利用的是jxl:
import java.io.File;
import java.io.IOException;
import jxl.Cell;
import jxl.Sheet;
import jxl.Workbook;
import jxl.read.biff.BiffException;
import jxl.write.Label;
import
- web报表工具finereport常用函数的用法总结(数组函数)
老A不折腾
finereportweb报表函数总结
ADD2ARRAY
ADDARRAY(array,insertArray, start):在数组第start个位置插入insertArray中的所有元素,再返回该数组。
示例:
ADDARRAY([3,4, 1, 5, 7], [23, 43, 22], 3)返回[3, 4, 23, 43, 22, 1, 5, 7].
ADDARRAY([3,4, 1, 5, 7], "测试&q
- 游戏服务器网络带宽负载计算
墙头上一根草
服务器
家庭所安装的4M,8M宽带。其中M是指,Mbits/S
其中要提前说明的是:
8bits = 1Byte
即8位等于1字节。我们硬盘大小50G。意思是50*1024M字节,约为 50000多字节。但是网宽是以“位”为单位的,所以,8Mbits就是1M字节。是容积体积的单位。
8Mbits/s后面的S是秒。8Mbits/s意思是 每秒8M位,即每秒1M字节。
我是在计算我们网络流量时想到的
- 我的spring学习笔记2-IoC(反向控制 依赖注入)
aijuans
Spring 3 系列
IoC(反向控制 依赖注入)这是Spring提出来了,这也是Spring一大特色。这里我不用多说,我们看Spring教程就可以了解。当然我们不用Spring也可以用IoC,下面我将介绍不用Spring的IoC。
IoC不是框架,她是java的技术,如今大多数轻量级的容器都会用到IoC技术。这里我就用一个例子来说明:
如:程序中有 Mysql.calss 、Oracle.class 、SqlSe
- 高性能mysql 之 选择存储引擎(一)
annan211
mysqlInnoDBMySQL引擎存储引擎
1 没有特殊情况,应尽可能使用InnoDB存储引擎。 原因:InnoDB 和 MYIsAM 是mysql 最常用、使用最普遍的存储引擎。其中InnoDB是最重要、最广泛的存储引擎。她 被设计用来处理大量的短期事务。短期事务大部分情况下是正常提交的,很少有回滚的情况。InnoDB的性能和自动崩溃 恢复特性使得她在非事务型存储的需求中也非常流行,除非有非常
- UDP网络编程
百合不是茶
UDP编程局域网组播
UDP是基于无连接的,不可靠的传输 与TCP/IP相反
UDP实现私聊,发送方式客户端,接受方式服务器
package netUDP_sc;
import java.net.DatagramPacket;
import java.net.DatagramSocket;
import java.net.Ine
- JQuery对象的val()方法执行结果分析
bijian1013
JavaScriptjsjquery
JavaScript中,如果id对应的标签不存在(同理JAVA中,如果对象不存在),则调用它的方法会报错或抛异常。在实际开发中,发现JQuery在id对应的标签不存在时,调其val()方法不会报错,结果是undefined。
- http请求测试实例(采用json-lib解析)
bijian1013
jsonhttp
由于fastjson只支持JDK1.5版本,因些对于JDK1.4的项目,可以采用json-lib来解析JSON数据。如下是http请求的另外一种写法,仅供参考。
package com;
import java.util.HashMap;
import java.util.Map;
import
- 【RPC框架Hessian四】Hessian与Spring集成
bit1129
hessian
在【RPC框架Hessian二】Hessian 对象序列化和反序列化一文中介绍了基于Hessian的RPC服务的实现步骤,在那里使用Hessian提供的API完成基于Hessian的RPC服务开发和客户端调用,本文使用Spring对Hessian的集成来实现Hessian的RPC调用。
定义模型、接口和服务器端代码
|---Model
&nb
- 【Mahout三】基于Mahout CBayes算法的20newsgroup流程分析
bit1129
Mahout
1.Mahout环境搭建
1.下载Mahout
http://mirror.bit.edu.cn/apache/mahout/0.10.0/mahout-distribution-0.10.0.tar.gz
2.解压Mahout
3. 配置环境变量
vim /etc/profile
export HADOOP_HOME=/home
- nginx负载tomcat遇非80时的转发问题
ronin47
nginx负载后端容器是tomcat(其它容器如WAS,JBOSS暂没发现这个问题)非80端口,遇到跳转异常问题。解决的思路是:$host:port
详细如下:
该问题是最先发现的,由于之前对nginx不是特别的熟悉所以该问题是个入门级别的:
? 1 2 3 4 5
- java-17-在一个字符串中找到第一个只出现一次的字符
bylijinnan
java
public class FirstShowOnlyOnceElement {
/**Q17.在一个字符串中找到第一个只出现一次的字符。如输入abaccdeff,则输出b
* 1.int[] count:count[i]表示i对应字符出现的次数
* 2.将26个英文字母映射:a-z <--> 0-25
* 3.假设全部字母都是小写
*/
pu
- mongoDB 复制集
开窍的石头
mongodb
mongo的复制集就像mysql的主从数据库,当你往其中的主复制集(primary)写数据的时候,副复制集(secondary)会自动同步主复制集(Primary)的数据,当主复制集挂掉以后其中的一个副复制集会自动成为主复制集。提供服务器的可用性。和防止当机问题
mo
- [宇宙与天文]宇宙时代的经济学
comsci
经济
宇宙尺度的交通工具一般都体型巨大,造价高昂。。。。。
在宇宙中进行航行,近程采用反作用力类型的发动机,需要消耗少量矿石燃料,中远程航行要采用量子或者聚变反应堆发动机,进行超空间跳跃,要消耗大量高纯度水晶体能源
以目前地球上国家的经济发展水平来讲,
- Git忽略文件
Cwind
git
有很多文件不必使用git管理。例如Eclipse或其他IDE生成的项目文件,编译生成的各种目标或临时文件等。使用git status时,会在Untracked files里面看到这些文件列表,在一次需要添加的文件比较多时(使用git add . / git add -u),会把这些所有的未跟踪文件添加进索引。
==== ==== ==== 一些牢骚
- MySQL连接数据库的必须配置
dashuaifu
mysql连接数据库配置
MySQL连接数据库的必须配置
1.driverClass:com.mysql.jdbc.Driver
2.jdbcUrl:jdbc:mysql://localhost:3306/dbname
3.user:username
4.password:password
其中1是驱动名;2是url,这里的‘dbna
- 一生要养成的60个习惯
dcj3sjt126com
习惯
一生要养成的60个习惯
第1篇 让你更受大家欢迎的习惯
1 守时,不准时赴约,让别人等,会失去很多机会。
如何做到:
①该起床时就起床,
②养成任何事情都提前15分钟的习惯。
③带本可以随时阅读的书,如果早了就拿出来读读。
④有条理,生活没条理最容易耽误时间。
⑤提前计划:将重要和不重要的事情岔开。
⑥今天就准备好明天要穿的衣服。
⑦按时睡觉,这会让按时起床更容易。
2 注重
- [介绍]Yii 是什么
dcj3sjt126com
PHPyii2
Yii 是一个高性能,基于组件的 PHP 框架,用于快速开发现代 Web 应用程序。名字 Yii (读作 易)在中文里有“极致简单与不断演变”两重含义,也可看作 Yes It Is! 的缩写。
Yii 最适合做什么?
Yii 是一个通用的 Web 编程框架,即可以用于开发各种用 PHP 构建的 Web 应用。因为基于组件的框架结构和设计精巧的缓存支持,它特别适合开发大型应
- Linux SSH常用总结
eksliang
linux sshSSHD
转载请出自出处:http://eksliang.iteye.com/blog/2186931 一、连接到远程主机
格式:
ssh name@remoteserver
例如:
ssh
[email protected]
二、连接到远程主机指定的端口
格式:
ssh name@remoteserver -p 22
例如:
ssh i
- 快速上传头像到服务端工具类FaceUtil
gundumw100
android
快速迭代用
import java.io.DataOutputStream;
import java.io.File;
import java.io.FileInputStream;
import java.io.FileNotFoundException;
import java.io.FileOutputStream;
import java.io.IOExceptio
- jQuery入门之怎么使用
ini
JavaScripthtmljqueryWebcss
jQuery的强大我何问起(个人主页:hovertree.com)就不用多说了,那么怎么使用jQuery呢?
首先,下载jquery。下载地址:http://hovertree.com/hvtart/bjae/b8627323101a4994.htm,一个是压缩版本,一个是未压缩版本,如果在开发测试阶段,可以使用未压缩版本,实际应用一般使用压缩版本(min)。然后就在页面上引用。
- 带filter的hbase查询优化
kane_xie
查询优化hbaseRandomRowFilter
问题描述
hbase scan数据缓慢,server端出现LeaseException。hbase写入缓慢。
问题原因
直接原因是: hbase client端每次和regionserver交互的时候,都会在服务器端生成一个Lease,Lease的有效期由参数hbase.regionserver.lease.period确定。如果hbase scan需
- java设计模式-单例模式
men4661273
java单例枚举反射IOC
单例模式1,饿汉模式
//饿汉式单例类.在类初始化时,已经自行实例化
public class Singleton1 {
//私有的默认构造函数
private Singleton1() {}
//已经自行实例化
private static final Singleton1 singl
- mongodb 查询某一天所有信息的3种方法,根据日期查询
qiaolevip
每天进步一点点学习永无止境mongodb纵观千象
// mongodb的查询真让人难以琢磨,就查询单天信息,都需要花费一番功夫才行。
// 第一种方式:
coll.aggregate([
{$project:{sendDate: {$substr: ['$sendTime', 0, 10]}, sendTime: 1, content:1}},
{$match:{sendDate: '2015-
- 二维数组转换成JSON
tangqi609567707
java二维数组json
原文出处:http://blog.csdn.net/springsen/article/details/7833596
public class Demo {
public static void main(String[] args) { String[][] blogL
- erlang supervisor
wudixiaotie
erlang
定义supervisor时,如果是监控celuesimple_one_for_one则删除children的时候就用supervisor:terminate_child (SupModuleName, ChildPid),如果shutdown策略选择的是brutal_kill,那么supervisor会调用exit(ChildPid, kill),这样的话如果Child的behavior是gen_