import numpy as np
# 创建一维数组
a = np.array([0, 1, 2, 3, 4])
b = np.array((0, 1, 2, 3, 4))
print(a, type(a))
# [0 1 2 3 4] <class 'numpy.ndarray'>
print(b, type(b))
# [0 1 2 3 4] <class 'numpy.ndarray'>
# 创建二维数组
c = np.array([[11, 12, 13, 14, 15],
[16, 17, 18, 19, 20],
[21, 22, 23, 24, 25],
[26, 27, 28, 29, 30],
[31, 32, 33, 34, 35]])
print(c, type(c))
# [[11 12 13 14 15]
# [16 17 18 19 20]
# [21 22 23 24 25]
# [26 27 28 29 30]
# [31 32 33 34 35]] <class 'numpy.ndarray'>
# 创建三维数组
d = np.array([[(1.5, 2, 3), (4, 5, 6)],
[(3, 2, 1), (4, 5, 6)]])
print(d, type(d))
# [[[1.5 2. 3. ]
# [4. 5. 6. ]]
#
# [[3. 2. 1. ]
# [4. 5. 6. ]]] <class 'numpy.ndarray'>
1.array()和asarray()都可以将结构数据转化为 ndarray
import numpy as np
x = [[1, 1, 1], [1, 1, 1], [1, 1, 1]]
y = np.array(x)
z = np.asarray(x)
x[1][2] = 2
print(x,type(x))
# [[1, 1, 1], [1, 1, 2], [1, 1, 1]] <class 'list'>
print(y,type(y))
# [[1 1 1]
# [1 1 1]
# [1 1 1]] <class 'numpy.ndarray'>
print(z,type(z))
# [[1 1 1]
# [1 1 1]
# [1 1 1]] <class 'numpy.ndarray'>
2.array()和asarray()的区别。(array()和asarray()主要区别就是当数据源是ndarray 时,array()仍然会 copy 出一个副本,占用新的内存,但不改变 dtype 时 asarray()不会。)
import numpy as np
x = np.array([[1, 1, 1], [1, 1, 1], [1, 1, 1]])
y = np.array(x)
z = np.asarray(x)
w = np.asarray(x, dtype=np.int)
x[1][2] = 2
print(x,type(x),x.dtype)
# [[1 1 1]
# [1 1 2]
# [1 1 1]] <class 'numpy.ndarray'> int32
print(y,type(y),y.dtype)
# [[1 1 1]
# [1 1 1]
# [1 1 1]] <class 'numpy.ndarray'> int32
print(z,type(z),z.dtype)
# [[1 1 1]
# [1 1 2]
# [1 1 1]] <class 'numpy.ndarray'> int32
print(w,type(w),w.dtype)
# [[1 1 1]
# [1 1 2]
# [1 1 1]] <class 'numpy.ndarray'> int32
3.更改为较大的dtype时,其大小必须是array的最后一个axis的总大小(以字节为单位)的除数
import numpy as np
x = np.array([[1, 1, 1], [1, 1, 1], [1, 1, 1]])
print(x, x.dtype)
# [[1 1 1]
# [1 1 1]
# [1 1 1]] int32
x.dtype = np.float
# ValueError: When changing to a larger dtype, its size must be a divisor of the total size in bytes of the last axis of the array.
1.通过在每个坐标上执行一个函数来构造数组
import numpy as np
def f(x, y):
return 10 * x + y
x = np.fromfunction(f, (5, 4), dtype=int)
print(x)
# [[ 0 1 2 3]
# [10 11 12 13]
# [20 21 22 23]
# [30 31 32 33]
# [40 41 42 43]]
x = np.fromfunction(lambda i, j: i == j, (3, 3), dtype=int)
print(x)
# [[ True False False]
# [False True False]
# [False False True]]
x = np.fromfunction(lambda i, j: i + j, (3, 3), dtype=int)
print(x)
# [[0 1 2]
# [1 2 3]
# [2 3 4]]
import numpy as np
x = np.zeros(5)
print(x) # [0. 0. 0. 0. 0.]
x = np.zeros([2, 3])
print(x)
# [[0. 0. 0.]
# [0. 0. 0.]]
x = np.array([[1, 2, 3], [4, 5, 6]])
y = np.zeros_like(x)
print(y)
# [[0 0 0]
# [0 0 0]]
import numpy as np
x = np.ones(5)
print(x) # [1. 1. 1. 1. 1.]
x = np.ones([2, 3])
print(x)
# [[1. 1. 1.]
# [1. 1. 1.]]
x = np.array([[1, 2, 3], [4, 5, 6]])
y = np.ones_like(x)
print(y)
# [[1 1 1]
# [1 1 1]]
import numpy as np
x = np.empty(5)
print(x)
# [1.95821574e-306 1.60219035e-306 1.37961506e-306
# 9.34609790e-307 1.24610383e-306]
x = np.empty((3, 2))
print(x)
# [[1.60220393e-306 9.34587382e-307]
# [8.45599367e-307 7.56598449e-307]
# [1.33509389e-306 3.59412896e-317]]
x = np.array([[1, 2, 3], [4, 5, 6]])
y = np.empty_like(x)
print(y)
# [[ 7209029 6422625 6619244]
# [ 100 707539280 504]]
import numpy as np
x = np.eye(4)
print(x)
# [[1. 0. 0. 0.]
# [0. 1. 0. 0.]
# [0. 0. 1. 0.]
# [0. 0. 0. 1.]]
x = np.eye(2, 3)
print(x)
# [[1. 0. 0.]
# [0. 1. 0.]]
x = np.identity(4)
print(x)
# [[1. 0. 0. 0.]
# [0. 1. 0. 0.]
# [0. 0. 1. 0.]
# [0. 0. 0. 1.]]
import numpy as np
x = np.arange(9).reshape((3, 3))
print(x)
# [[0 1 2]
# [3 4 5]
# [6 7 8]]
print(np.diag(x)) # [0 4 8]
print(np.diag(x, k=1)) # [1 5]
print(np.diag(x, k=-1)) # [3 7]
v = [1, 3, 5, 7]
x = np.diag(v)
print(x)
# [[1 0 0 0]
# [0 3 0 0]
# [0 0 5 0]
# [0 0 0 7]]
# import numpy as np
x = np.full((2,), 7)
print(x)
# [7 7]
x = np.full(2, 7)
print(x)
# [7 7]
x = np.full((2, 7), 7)
print(x)
# [[7 7 7 7 7 7 7]
# [7 7 7 7 7 7 7]]
x = np.array([[1, 2, 3], [4, 5, 6]])
y = np.full_like(x, 7)
print(y)
# [[7 7 7]
# [7 7 7]]
import numpy as np
x = np.arange(5)
print(x) # [0 1 2 3 4]
x = np.arange(3, 7, 2)
print(x) # [3 5]
x = np.linspace(start=0, stop=2, num=9)
print(x)
# [0. 0.25 0.5 0.75 1. 1.25 1.5 1.75 2. ]
x = np.logspace(0, 1, 5)
print(np.around(x, 2))
# [ 1. 1.78 3.16 5.62 10. ]
#np.around 返回四舍五入后的值,可指定精度。
# around(a, decimals=0, out=None)
# a 输入数组
# decimals 要舍入的小数位数。 默认值为0。 如果为负,整数将四舍五入到小数点左侧的位置
x = np.linspace(start=0, stop=1, num=5)
x = [10 ** i for i in x]
print(np.around(x, 2))
# [ 1. 1.78 3.16 5.62 10. ]
x = np.random.random(5)
print(x)
# [0.41768753 0.16315577 0.80167915 0.99690199 0.11812291]
x = np.random.random([2, 3])
print(x)
# [[0.41151858 0.93785153 0.57031309]
# [0.13482333 0.20583516 0.45429181]]
import numpy as np
personType = np.dtype({
'names': ['name', 'age', 'weight'],
'formats': ['U30', 'i8', 'f8']})
a = np.array([('Liming', 24, 63.9), ('Mike', 15, 67.), ('Jan', 34, 45.8)],
dtype=personType)
print(a, type(a))
# [('Liming', 24, 63.9) ('Mike', 15, 67. ) ('Jan', 34, 45.8)]
# <class 'numpy.ndarray'>
import numpy as np
personType = np.dtype([('name', 'U30'), ('age', 'i8'), ('weight', 'f8')])
a = np.array([('Liming', 24, 63.9), ('Mike', 15, 67.), ('Jan', 34, 45.8)],
dtype=personType)
print(a, type(a))
# [('Liming', 24, 63.9) ('Mike', 15, 67. ) ('Jan', 34, 45.8)]
# <class 'numpy.ndarray'>
# 结构数组的取值方式和一般数组差不多,可以通过下标取得元素:
print(a[0])
# ('Liming', 24, 63.9)
print(a[-2:])
# [('Mike', 15, 67. ) ('Jan', 34, 45.8)]
# 我们可以使用字段名作为下标获取对应的值
print(a['name'])
# ['Liming' 'Mike' 'Jan']
print(a['age'])
# [24 15 34]
print(a['weight'])
# [63.9 67. 45.8]
import numpy as np
a = np.array([1, 2, 3, 4, 5])
print(a.shape) # (5,)
print(a.dtype) # int32
print(a.size) # 5
print(a.ndim) # 1
print(a.itemsize) # 4
b = np.array([[1, 2, 3], [4, 5, 6.0]])
print(b.shape) # (2, 3)
print(b.dtype) # float64
print(b.size) # 6
print(b.ndim) # 2
print(b.itemsize) # 8
import numpy as np
a = np.array([1, 2, 3, 4, 5])
print(a) # [1 2 3 4 5]
b = np.array([1, 2, 3, 4, '5'])
print(b) # ['1' '2' '3' '4' '5']
c = np.array([1, 2, 3, 4, 5.0])
print(c) # [1. 2. 3. 4. 5.]
参考:阿里云天池