LeetCode_669 修剪二叉搜索树

1、题目:修剪二叉搜索树

给你二叉搜索树的根节点 root ,同时给定最小边界low 和最大边界 high。通过修剪二叉搜索树,使得所有节点的值在[low, high]中。修剪树 不应该 改变保留在树中的元素的相对结构 (即,如果没有被移除,原有的父代子代关系都应当保留)。 可以证明,存在 唯一的答案 。

所以结果应当返回修剪好的二叉搜索树的新的根节点。注意,根节点可能会根据给定的边界发生改变。

LeetCode_669 修剪二叉搜索树_第1张图片

2、解题思路

递归

递归三步曲

1、确定递归函数的参数和返回类型,因为是要遍历整棵树,做修改,其实不需要返回值也可以,我们也可以完成修剪(其实就是从二叉树中移除节点)的操作。但是有返回值,更方便,可以通过递归函数的返回值来移除节点。

TreeNode* trimBST(TreeNode* root, int low, int high)

2、确定终止条件,修剪的操作并不是在终止条件上进行的,所以就是遇到空节点返回就可以了。

if (root == nullptr ) return nullptr;

3、确定单层递归的逻辑,如果root(当前节点)的元素小于low的数值,那么应该递归右子树,并返回右子树符合条件的头结点。如果root(当前节点)的元素大于high的,那么应该递归左子树,并返回左子树符合条件的头结点。接下来要将下一层处理完左子树的结果赋给root->left,处理完右子树的结果赋给root->right。最后返回root节点。

3、代码

class Solution {
public:
    TreeNode* trimBST(TreeNode* root, int low, int high) {
        if (root == nullptr ) return nullptr;
        if (root->val < low) {
            TreeNode* right = trimBST(root->right, low, high); // 寻找符合区间[low, high]的节点
            return right;
        }
        if (root->val > high) {
            TreeNode* left = trimBST(root->left, low, high); // 寻找符合区间[low, high]的节点
            return left;
        }
        root->left = trimBST(root->left, low, high); // root->left接入符合条件的左孩子
        root->right = trimBST(root->right, low, high); // root->right接入符合条件的右孩子
        return root;
    }
};

你可能感兴趣的:(LeetCode,leetcode)