8、内部FLASH模拟EEPROM实验(STM32F407)

STM32编程方式

在线编程(ICP,In-Circuit Programming):  通过JTAG/SWD协议或者系统加载程序(Bootloader)下载用户应用程序到微控制器中。

在程序中编程(IAP,In Application Programming):通过任何一种通信接口(如IO端口,USB,CAN,UART,I2C,SPI等)下载程序或者应用数据到存储器中。也就是说,STM32允许用户在应用程序中重新烧写闪存存储器中的内容。然而,IAP需要至少有一部分程序已经使用ICP方式烧到闪存存储器中(Bootloader)。

闪存模块存储器组织

8、内部FLASH模拟EEPROM实验(STM32F407)_第1张图片

STM32F407ZGT6的FLASH大小为1024K

STM32F40x的闪存模块由:主存储器、系统存储器、OPT区域和选项字节等4部分组成。

①主存储器

该部分用来存放代码和数据常数(如const类型的数据)。分为12个扇区,前4个扇区为16KB大小,然后扇区4是64KB大小,扇区5~11是128K大小, 不同容量的STM32F4,拥有的扇区数不一样,比如我们的STM32F407ZGT6,则拥有全部12个扇区。从上图可以看出主存储器的起始地址就是0X08000000, B0、B1都接GND的时候,就是从0X08000000开始运行代码的。

②系统存储器

这个主要用来存放STM32F4的bootloader代码,此代码是出厂的时候就固化在STM32F4里面了,专门来给主存储器下载代码的。当B0接V3.3,B1接GND的时候,从该存储器启动(即进入串口下载模式)。

③OTP区域

即一次性可编程区域,共528字节,被分成两个部分,前面512字节(32字节为1块,分成16块),可以用来存储一些用户数据(一次性的,写完一次,永远不可以擦除!!),后面16字节,用于锁定对应块。

④选项字节

用于配置读保护、BOR级别、软件/硬件看门狗以及器件处于待机或停止模式下的复位。

闪存存储器接口寄存器,该部分用于控制闪存读写等,是整个闪存模块的控制机构。

在执行闪存写操作时,任何对闪存的读操作都会锁住总线,在写操作完成后读操作才能正确地进行;既在进行写或擦除操作时,不能进行代码或数据的读取操作。

FLASH闪存的读取

STM23F4的FLASH读取是很简单的。例如,我们要从地址addr,读取一个字(字节为8位,半字为16位,字为32位),可以通过如下的语句读取:

data=*(vu32*)addr;

将addr强制转换为vu32指针,然后取该指针所指向的地址的值,即得到了addr地址的值。类似的,将上面的vu32改为vu16,即可读取指定地址的一个半字。相对FLASH读取来说,STM32F4 FLASH的写就复杂一点了,下面我们介绍STM32F4闪存的编程和擦除。

注意:

STM32F4可通过内部的I-Code指令总线或D-Code数据总线访问内置闪存模块,本章我们主要讲解数据读写,即通过D-Code数据总线来访问内部闪存模块。 为了准确读取 Flash 数据,必须根据 CPU 时钟 (HCLK) 频率和器件电源电压在 Flash 存取控制寄存器 (FLASH_ACR) 中正确地设置等待周期数 (LATENCY)。当电源电压低于2.1V 时,必须关闭预取缓冲器。Flash 等待周期与CPU时钟频率之间的对应关系:

8、内部FLASH模拟EEPROM实验(STM32F407)_第2张图片

供电电压,我们一般是3.3V,所以,在我们设置168Mhz频率作为CPU时钟之前,必须先设置LATENCY为5,否则FLASH读写可能出错,导致死机

FLASH闪存的编程(写)和擦除操作

在对 STM32F4的Flash执行写入或擦除操作期间,任何读取Flash的尝试都会导致总线阻塞。只有在完成编程操作后,才能正确处理读操作。这意味着,写/擦除操作进行期间不能从Flash中执行代码或数据获取操作。

STM32F4的闪存编程由6个32位寄存器控制,他们分别是:

  1. FLASH访问控制寄存器(FLASH_ACR)
  2. FLASH密钥寄存器(FLASH_KEYR)其中FPEC总共有2个键值: KEY1=0X45670123 KEY2=0XCDEF89AB
  3. FLASH选项秘钥寄存器(FLASH_OPTKEYR)
  4. FLASH状态寄存器(FLASH_SR)
  5. FLASH控制寄存器(FLASH_CR)
  6. FLASH选项控制寄存器(FLASH_OPTCR) 

FLASH编程注意事项

1、STM32F4复位后,FLASH编程操作是被保护的,不能写入FLASH_CR寄存器;通过写入特定的序列(0X45670123和0XCDEF89AB)到FLASH_KEYR寄存器才可解除写保护,只有在写保护被解除后,我们才能操作相关寄存器。    FLASH_CR的解锁序列为:

 1)写0X45670123(KEY1)到FLASH_KEYR      

2)写0XCDEF89AB(KEY2)到FLASH_KEYR 

通过这两个步骤,即可解锁FLASH_CR,如果写入错误,那么FLASH_CR将被锁定,直到下次复位后才可以再次解锁。

2、STM32F4闪存的编程位数可以通过FLASH_CR的PSIZE字段配置,PSIZE的设置必须和电源电压匹配,由于我们开发板用的电压是3.3V,所以PSIZE必须设置为10,即32位并行位数。擦除或者编程,都必须以32位为基础进行。

8、内部FLASH模拟EEPROM实验(STM32F407)_第3张图片

3、STM32F4的FLASH在编程的时候,也必须要求其写入地址的FLASH是被擦除了的(也就是其值必须是0XFFFFFFFF),否则无法写入。 

程序源码 

stmflash.h

#ifndef __STMFLASH_H__
#define __STMFLASH_H__
#include "sys.h"

// FLASH起始地址
#define STM32_FLASH_BASE 0x08000000 // STM32 FLASH的起始地址

// FLASH 扇区的起始地址
#define ADDR_FLASH_SECTOR_0 ((u32)0x08000000)  // 扇区0起始地址, 16 Kbytes
#define ADDR_FLASH_SECTOR_1 ((u32)0x08004000)  // 扇区1起始地址, 16 Kbytes
#define ADDR_FLASH_SECTOR_2 ((u32)0x08008000)  // 扇区2起始地址, 16 Kbytes
#define ADDR_FLASH_SECTOR_3 ((u32)0x0800C000)  // 扇区3起始地址, 16 Kbytes
#define ADDR_FLASH_SECTOR_4 ((u32)0x08010000)  // 扇区4起始地址, 64 Kbytes
#define ADDR_FLASH_SECTOR_5 ((u32)0x08020000)  // 扇区5起始地址, 128 Kbytes
#define ADDR_FLASH_SECTOR_6 ((u32)0x08040000)  // 扇区6起始地址, 128 Kbytes
#define ADDR_FLASH_SECTOR_7 ((u32)0x08060000)  // 扇区7起始地址, 128 Kbytes
#define ADDR_FLASH_SECTOR_8 ((u32)0x08080000)  // 扇区8起始地址, 128 Kbytes
#define ADDR_FLASH_SECTOR_9 ((u32)0x080A0000)  // 扇区9起始地址, 128 Kbytes
#define ADDR_FLASH_SECTOR_10 ((u32)0x080C0000) // 扇区10起始地址,128 Kbytes
#define ADDR_FLASH_SECTOR_11 ((u32)0x080E0000) // 扇区11起始地址,128 Kbytes

u32 STMFLASH_ReadWord(u32 faddr);                                 // 读出字
void STMFLASH_Write(u32 WriteAddr, u32 *pBuffer, u32 NumToWrite); // 从指定地址开始写入指定长度的数据
void STMFLASH_Read(u32 ReadAddr, u32 *pBuffer, u32 NumToRead);    // 从指定地址开始读出指定长度的数据

#endif

stmflash.c

#include "stmflash.h"
#include "delay.h"
#include "usart.h" 
 
//读取指定地址的半字(16位数据) 
//faddr:读地址 
//返回值:对应数据.
u32 STMFLASH_ReadWord(u32 faddr)
{
	return *(vu32*)faddr; 
}  
//获取某个地址所在的flash扇区
//addr:flash地址
//返回值:0~11,即addr所在的扇区
uint16_t STMFLASH_GetFlashSector(u32 addr)
{
	if(addr

main.c

#include "sys.h"
#include "delay.h"
#include "usart.h"
#include "led.h"
#include "lcd.h"
#include "stmflash.h" 
#include "key.h"  

//要写入到STM32 FLASH的字符串数组
const u8 TEXT_Buffer[]={"STM32 FLASH TEST"};
#define TEXT_LENTH sizeof(TEXT_Buffer)	 		  	//数组长度	
#define SIZE TEXT_LENTH/4+((TEXT_LENTH%4)?1:0)

#define FLASH_SAVE_ADDR  0X0800C004 	//设置FLASH 保存地址(必须为偶数,且所在扇区,要大于本代码所占用到的扇区.
										//否则,写操作的时候,可能会导致擦除整个扇区,从而引起部分程序丢失.引起死机.
int main(void)
{ 
	u8 key=0;
	u16 i=0;
	u8 datatemp[SIZE];	
	NVIC_PriorityGroupConfig(NVIC_PriorityGroup_2);//设置系统中断优先级分组2
	delay_init(168);  //初始化延时函数
	uart_init(115200);		//初始化串口波特率为115200
	
	LED_Init();					//初始化LED 
 	LCD_Init();					//LCD初始化  
 	KEY_Init();					//按键初始化 
 	POINT_COLOR=RED;//设置字体为红色 
	LCD_ShowString(30,50,200,16,16,"Explorer STM32F4");	
	LCD_ShowString(30,70,200,16,16,"FLASH EEPROM TEST");	
	LCD_ShowString(30,90,200,16,16,"ATOM@ALIENTEK");
	LCD_ShowString(30,110,200,16,16,"2023/12/01"); 
	LCD_ShowString(30,130,200,16,16,"KEY1:Write  KEY0:Read");
	while(1)
	{
		key=KEY_Scan(0);
		if(key==KEY1_PRES)	//KEY1按下,写入STM32 FLASH
		{
			LCD_Fill(0,170,239,319,WHITE);//清除半屏    
 			LCD_ShowString(30,170,200,16,16,"Start Write FLASH....");
			STMFLASH_Write(FLASH_SAVE_ADDR,(u32*)TEXT_Buffer,SIZE);
			LCD_ShowString(30,170,200,16,16,"FLASH Write Finished!");//提示传送完成
		}
		if(key==KEY0_PRES)	//KEY0按下,读取字符串并显示
		{
 			LCD_ShowString(30,170,200,16,16,"Start Read FLASH.... ");
			STMFLASH_Read(FLASH_SAVE_ADDR,(u32*)datatemp,SIZE);
			LCD_ShowString(30,170,200,16,16,"The Data Readed Is:  ");//提示传送完成
			LCD_ShowString(30,190,200,16,16,datatemp);//显示读到的字符串
		}
		i++;
		delay_ms(10);  
		if(i==20)
		{
			LED0=!LED0;//提示系统正在运行	
			i=0;
		}		   
	}    
}

 实验效果

FLASH模拟EEPROM

你可能感兴趣的:(单片机充电记录,stm32,嵌入式硬件,单片机)