转载:
https://www.bilibili.com/video/BV1PJ411n7xZ
参考:
https://gitee.com/moxi159753/LearningNotes/tree/master/JVM,
https://www.cnblogs.com/yanl55555/p/12623447.html
一个进程对应一个JVM实列,其中进程包含多个线程,该进程的n个线程是共享同一堆空间的。
一个JVM实例只存在一个堆内存,堆也是Java内存管理的核心区域。
Java堆区在JVM启动的时候即被创建,其空间大小也就确定了。是JVM管理的最大一块内存空间。
堆内存的大小是可以调节的。
《Java虚拟机规范》规定,堆可以处于物理上不连续的内存空间中,但在逻辑上它应该被视为连续的。
所有的线程共享Java堆,在这里还可以划分线程私有的缓冲区(Thread Local Allocation Buffer,TLAB)。
《Java虚拟机规范》中对Java堆的描述是:所有的对象实例以及数组都应当在运行时分配在堆上。(The heap is the run-time data area from which memory for all class instances and arrays is allocated)
我要说的是:**“几乎”所有的对象实例都在这里分配内存**。—从实际使用角度看的。
因为还有一些对象是在栈上分配的(‘几乎’是因为可能存储在栈上,另见逃逸分析)
数组和对象可能永远不会存储在栈上,因为栈帧中保存引用,这个引用指向对象或者数组在堆中的位置。
在方法结束后,堆中的对象不会马上被移除,仅仅在垃圾收集的时候才会被移除。
public class HeapDemo {
public static void main(String[] args) {
System.out.println("start...");
try {
Thread.sleep(1000000);
} catch (InterruptedException e) {
e.printStackTrace();
}
System.out.println("end...");
}
}
-Xms10m:堆区的起始内存
-Xmx10m:堆区的最大内存
run -> Edit Configurations.… -> VM options: ->
cmd->jvisualvm或者xxx\jdk\bin\jvisualvm
以上Visual GC是需要插件的:
https://blog.csdn.net/xiaojin21cen/article/details/106612383(需梯子)
或者加本人qq740354603(仅java8)
Young Generation Space | 新生区 | Young/New | 又被划分为Eden区和Survivor区 |
Tenure Generation Space | 养老区 | Old/Tenure | |
Permanent Space | 永久区 | Perm |
Young Generation Space | 新生区 | Young/New | 又被划分为Eden区和Survivor区 |
Tenure Generation Space | 养老区 | Old/Tenure | |
Meta Space | 元空间 | Meta |
约定:新生区 -> 新生代 -> 年轻代 、 养老区 -> 老年区 -> 老年代、 永久区 -> 永久代
Java堆区用于存储java对象实例,堆的大小在jvm启动时就已经设定好了,可以通过 "-Xmx"和 "-Xms"来进行设置
“-Xms"用于表示堆区的起始内存,等价于-xx:InitialHeapSize
“-Xmx"则用于表示堆区的最大内存,等价于-XX:MaxHeapSize
(-X 是jvm的运行参数,ms 是memory start)
一旦堆区中的内存大小超过“-xmx"所指定的最大内存时,将会抛出outofMemoryError异常。
通常会将-Xms和-Xmx两个参数配置相同的值,其目的是为了能够在ava垃圾回收机制清理完堆区后不需要重新分隔计算堆区的大小,从而提高性能。
默认情况:
初始内存大小:物理电脑内存大小/64
最大内存大小:物理电脑内存大小/4
public class HeapSpaceInitial {
public static void main(String[] args) {
//返回Java虚拟机中的堆内存总量
long initialMemory = Runtime.getRuntime().totalMemory() / 1024 / 1024;
//返回Java虚拟机试图使用的最大堆内存量
long maxMemory = Runtime.getRuntime().maxMemory() / 1024 / 1024;
System.out.println("-Xms : " + initialMemory + "M");
System.out.println("-Xmx : " + maxMemory + "M");
System.out.println("系统内存大小为:" + initialMemory * 64.0 / 1024 + "G");
System.out.println("系统内存大小为:" + maxMemory * 4.0 / 1024 + "G");
// -Xms : 124M
//-Xmx : 1980M
//系统内存大小为:7.75G
//系统内存大小为:7.734375G
// try {
// Thread.sleep(1000000);
// } catch (InterruptedException e) {
// e.printStackTrace();
// }
}
}
public class HeapSpaceInitial {
public static void main(String[] args) {
//返回Java虚拟机中的堆内存总量
long initialMemory = Runtime.getRuntime().totalMemory() / 1024 / 1024;
//返回Java虚拟机试图使用的最大堆内存量
long maxMemory = Runtime.getRuntime().maxMemory() / 1024 / 1024;
System.out.println("-Xms : " + initialMemory + "M");
System.out.println("-Xmx : " + maxMemory + "M");
// System.out.println("系统内存大小为:" + initialMemory * 64.0 / 1024 + "G");
// System.out.println("系统内存大小为:" + maxMemory * 4.0 / 1024 + "G");
try {
Thread.sleep(1000000);
} catch (InterruptedException e) {
e.printStackTrace();
}
// -Xms : 575M
//-Xmx : 575M
// 貌似java11就是600M,java8是575M
}
}
run -> Edit Configurations.… -> VM options: ->
jps # 查看当前运行的进程
jstat -gc pid # 查看指定pid进程的堆内存分配情况
C (总量) U(已使用量)
OC OU 老年代
s0c s1c s0u s1u ec eu | 新生代 > ec eu 伊甸园区 and S1和S0
S1和S0=from和to,只是讲法不一样
清除复制算法(后面讲)
/**
* -Xms600m -Xmx600m
*
* -XX:NewRatio : 设置新生代与老年代的比例。默认值是2.
* -XX:SurvivorRatio :设置新生代中Eden区与Survivor区的比例。默认值是8
* -XX:-UseAdaptiveSizePolicy :关闭自适应的内存分配策略 '-'关闭,'+'打开 (暂时用不到)
* -Xmn:设置新生代的空间的大小。 (一般不设置)
*
*/
public class EdenSurvivorTest {
public static void main(String[] args) {
System.out.println("我只是来打个酱油~");
try {
Thread.sleep(1000000);
} catch (InterruptedException e) {
e.printStackTrace();
}
}
}
存储在JVM中的Java对象可以被划分为两类:
一类是生命周期较短的瞬时对象,这类对象的创建和消亡都非常迅速生命周期短的,及时回收即可
另外一类对象的生命周期却非常长,在某些极端的情况下还能够与JVM的生命周期保持一致
Java堆区进一步细分的话,可以划分为年轻代(YoungGen)和老年代(oldGen)
总结:
Eden:From:to -> 8:1:1 (-XX:SurvivorRatio)
新生代:老年代 - > 1 : 2(-XX:NewRatio)
/**
* -Xms600m -Xmx600m
*
* -XX:NewRatio : 设置新生代与老年代的比例。默认值是2.
* -XX:SurvivorRatio :设置新生代中Eden区与Survivor区的比例。默认值是8
* -XX:-UseAdaptiveSizePolicy :关闭自适应的内存分配策略 '-'关闭,'+'打开 (暂时用不到)
* -Xmn:设置新生代的空间的大小。 (一般不设置)
*
*/
public class EdenSurvivorTest {
public static void main(String[] args) {
System.out.println("我只是来打个酱油~");
try {
Thread.sleep(1000000);
} catch (InterruptedException e) {
e.printStackTrace();
}
}
}
为新对象分配内存是一件非常严谨和复杂的任务,JM的设计者们不仅需要考虑内存如何分配、在哪里分配等问题,并且由于内存分配算法与内存回收算法密切相关,所以还需要考虑GC执行完内存回收后是否会在内存空间中产生内存碎片。
我们创建的对象,一般都是存放在Eden区的,当我们Eden区满了后,就会触发GC操作,一般被称为 YGC / Minor GC操作(只有Eden触发YGC,S0或S1不触发YGC)
当我们进行一次垃圾收集后,红色的将会被回收,而绿色的还会被占用着,存放在S0(Survivor From)区。同时我们给每个对象设置了一个年龄计数器,一次回收后就是1。
同时Eden区继续存放对象,当Eden区再次存满的时候,又会触发一个MinorGC操作,此时GC将会把 Eden和Survivor From中的对象 进行一次收集,把存活的对象放到 Survivor To区(之后这是from不是to),同时让年龄 + 1
我们继续不断的进行对象生成 和 垃圾回收,当Survivor中的对象的年龄达到15的时候,将会触发一次 Promotion晋升的操作,也就是将年轻代中的对象 晋升到 老年代中
public class HeapInstanceTest {
byte[] buffer = new byte[new Random().nextInt(1024 * 200)];
public static void main(String[] args) {
ArrayList<HeapInstanceTest> list = new ArrayList<HeapInstanceTest>();
while (true) {
list.add(new HeapInstanceTest());
try {
Thread.sleep(10);
} catch (InterruptedException e) {
e.printStackTrace();
}
}
}
}
//在老年代和新生代都满了,就出现OOM
window10,推荐使用JProfiler v11.0.2 64位 免费特别版(附注册码+安装教程).zip
(没跑起来,先build指定的类文件)
JVM在进行GC时,并非每次都针对上面三个内存区域(新生代、老年代、方法区)一起回收的,大部分时候回收都是指新生代。
针对hotSpot VM的实现,它里面的GC按照回收区域又分为两大种类型:一种是部分收集(Partial GC),一种是整堆收集(Full GC)
部分收集:不是完整收集整个Java堆的垃圾收集。其中又分为:
新生代收集(Minor GC/Young GC):只是新生代的垃圾收集
老年代收集(MajorGC/o1dGC):只是老年代的圾收集。
目前,只有CMSGC会有单独收集老年代的行为。
注意,很多时候Major GC会和FullGC混淆使用,需要具体分辨是老年代回收还是整堆回收。
混合收集(MixedGC):收集整个新生代以及部分老年代的垃圾收集。
整堆收集(FullGC):收集整个java堆和方法区的垃圾收集。
Minor GC:新生代的GC,Major GC:老年代的GC,Full GC:整堆收集,收集整个Java堆和方法区的垃圾收集
我们都知道,JVM的调优的一个环节,也就是垃圾收集,我们需要尽量的避免垃圾回收,因为在垃圾回收的过程中,容易出现STW的问题,而 Major GC 和 Full GC出现STW的时间,是Minor GC的10倍以上
指发生在老年代的GC,对象从老年代消失时,我们说 “Major Gc” 或 “Full GC” 发生了
出现了MajorGc,经常会伴随至少一次的Minor GC(但非绝对的,在Parallel Scavenge收集器的收集策略里就有直接进行MajorGC的策略选择过程)
也就是在老年代空间不足时,会先尝试触发MinorGc。如果之后空间还不足,则触发Major GC
Major GC的速度一般会比MinorGc慢10倍以上,STW的时间更长,
如果Major GC后,内存还不足,就报OOM了
public class GCTest {
public static void main(String[] args) {
int i = 0;
try {
List<String> list = new ArrayList<>();
String a = "atguigu.com";
while(true) {
list.add(a);
a = a + a;
i++;
}
}catch (Exception e) {
e.getStackTrace();
}
}
}
触发OOM的时候,一定是进行了一次Full GC,因为只有在老年代空间不足时候,才会爆出OOM异常
新生代:有Eden、两块大小相同的survivor(又称为from/to,s0/s1)构成,to总为空。
老年代:存放新生代中经历多次GC仍然存活的对象。
如果对象在Eden出生并经过第一次Minor GC后仍然存活,并且能被Survivor容纳的话,将被移动到survivor空间中,并将对象年龄设为1。对象在survivor区中每熬过一次MinorGC,年龄就增加1岁,当它的年龄增加到一定程度(默认为15岁,其实每个JVM、每个GC都有所不同)时,就会被晋升到老年代
对象晋升老年代的年龄阀值,可以通过选项-xx:MaxTenuringThreshold来设置
针对不同年龄段的对象分配原则如下所示:
优先分配到Eden
大对象直接分配到老年代
尽量避免程序中出现过多的大对象
长期存活的对象分配到老年代
动态对象年龄判断
**如果survivor区中相同年龄的所有对象大小的总和大于Survivor空间的一半,年龄大于或等于该年龄的对象可以直接进入老年代,无须等到MaxTenuringThreshold 中要求的年龄。**
空间分配担保: -Xx:HandlePromotionFailure
/** 测试:大对象直接进入老年代
* -Xms60m -Xmx60m -XX:NewRatio=2 -XX:SurvivorRatio=8 -XX:+PrintGCDetails
*/
public class YoungOldAreaTest {
// 新生代 20m ,Eden 16m, s0 2m, s1 2m
// 老年代 40m
public static void main(String[] args) throws InterruptedException {
//Eden 区无法存放buffer 晋升老年代
byte[] buffer = new byte[1024 * 1024 * 20];//20m
}
}
不一定,因为还有TLAB这个概念,在堆中划分出一块区域,为每个线程所独占**
对象首先是通过TLAB开辟空间,如果不能放入,那么需要通过Eden来进行分配
https://www.oracle.com/java/technologies/javase/vmoptions-jsp.html(我随便找的,ppt的已失效)
-XX:+PrintFlagsInitial:查看所有的参数的默认初始值
-XX:+PrintFlagsFinal:查看所有的参数的最终值(可能会存在修改,不再是初始值)(修改过的那行,=号前面有:)
具体查看某个参数的指令:
jps:查看当前运行中的进程
jinfo -flag xxx 进程id: 查看xx指令
-Xms:初始堆空间内存(默认为物理内存的1/64)
-Xmx:最大堆空间内存(默认为物理内存的1/4)
-Xmn:设置新生代的大小。(初始值及最大值)
-XX:NewRatio:配置新生代与老年代在堆结构的占比
-XX:SurvivorRatio:设置新生代中Eden和S0/S1空间的比例
-XX:MaxTenuringThreshold:设置新生代垃圾的最大年龄
-XX:+PrintGCDetails:输出详细的GC处理日志
打印gc简要信息:①-Xx:+PrintGC ② - verbose:gc
-XX:HandlePromotionFalilure:是否设置空间分配担保
-XX:+DoEscapeAnalysis 开启逃逸分析(默认开启)
-xx:+EliminateAllocations:开启了标量替换(默认打开),允许将对象打散分配在栈上,
在发生Minor Gc之前,虚拟机会检查老年代最大可用的连续空间是否大于新生代所有对象的总空间。
1.如果大于,则此次Minor GC是安全的
2.如果小于,则虚拟机会查看-xx:HandlePromotionFailure设置值是否允担保失败。
2.1如果HandlePromotionFailure=true,那么会继续检查老年代最大可用连续空间是否大于历次晋升到老年代的对象的平均大小。
2.1.1如果大于,则尝试进行一次Minor GC,但这次Minor GC依然是有风险的;
2.2.2如果小于,则改为进行一次FullGC。
2.2如果HandlePromotionFailure=false,则改为进行一次Ful1 Gc。
注意:在JDK6 Update24之后(JDK7),HandlePromotionFailure参数不会再影响到虚拟机的空间分配担保策略,观察openJDK中的源码变化,虽然源码中还定义了HandlePromotionFailure参数,但是在代码中已经不会再使用它。
JDK6 Update24之后的规则变为:只要老年代的连续空间大于新生代对象总大小或者历次晋升的平均大小就会进行Minor GC,否则将进行Full GC。
在《深入理解Java虚拟机》中关于Java堆内存有这样一段描述:
随着JIT编译期的发展与逃逸分析技术逐渐成熟,栈上分配、标量替换优化技术将会导致一些微妙的变化,所有的对象都分配到堆上也渐渐变得不那么“绝对”了。
在Java虚拟机中,对象是在Java堆中分配内存的,这是一个普遍的常识。但是,有一种特殊情况,那就是如果经过逃逸分析(Escape Analysis)后发现,一个对象并没有逃逸出方法的话,那么就可能被优化成栈上分配。这样就无需在堆上分配内存,也无须进行垃圾回收了。这也是最常见的堆外存储技术。
此外,前面提到的基于openJDk深度定制的TaoBaovm,其中创新的GCIH(GC invisible heap)技术实现off-heap,将生命周期较长的Java对象从heap中移至heap外,并且GC不能管理GCIH内部的Java对象,以此达到降低GC的回收频率和提升GC的回收效率的目的
如何将堆上的对象分配到栈,需要使用逃逸分析手段。
这是一种可以有效减少Java程序中同步负载和内存堆分配压力的跨函数全局数据流分析算法。通过逃逸分析,Java Hotspot编译器能够分析出一个新的对象的引用的使用范围从而决定是否要将这个对象分配到堆上。逃逸分析的基本行为就是分析对象动态作用域:
如何快速的判断是否发生了逃逸分析,就看new的对象实体是否有可能在方法外被调用
public void my_method() {
V v = new V();
// use v
// ....
v = null;
}
没有发生逃逸的对象,则可以分配到栈上,随着方法执行的结束,栈空间就被移除,每个栈里面包含了很多栈帧,也就是发生逃逸分析
public static StringBuffer createStringBuffer(String s1, String s2) {
StringBuffer sb = new StringBuffer();
sb.append(s1);
sb.append(s2);
return sb;
}
如果想要StringBuffer sb不发生逃逸,可以这样写
public static String createStringBuffer(String s1, String s2) {
StringBuffer sb = new StringBuffer();
sb.append(s1);
sb.append(s2);
return sb.toString();
}
/**
* 逃逸分析
*
* 如何快速的判断是否发生了逃逸分析,就看“new的对象实体”是否有可能在方法外被调用。
* 如果当前的obj引用声明为static的?仍然会发生逃逸。
*/
public class EscapeAnalysis {
public EscapeAnalysis obj;
/*
方法返回EscapeAnalysis对象,发生逃逸
*/
public EscapeAnalysis getInstance(){
return obj == null? new EscapeAnalysis() : obj;
}
/*
为成员属性赋值,发生逃逸
*/
public void setObj(){
this.obj = new EscapeAnalysis();
}
//思考:如果当前的obj引用声明为static的?仍然会发生逃逸。
/*
对象的作用域仅在当前方法中有效,没有发生逃逸
*/
public void useEscapeAnalysis(){
EscapeAnalysis e = new EscapeAnalysis();
}
/*
引用成员变量的值,发生逃逸
*/
public void useEscapeAnalysis1(){
EscapeAnalysis e = getInstance();
//getInstance().xxx()同样会发生逃逸
}
}
如何快速的判断是否发生了逃逸分析,就看“new的对象实体”是否有可能在方法外被调用。
如果当前的obj引用声明为static的?仍然会发生逃逸。
在JDK 1.7 版本之后,HotSpot中默认就已经开启了逃逸分析
如果使用的是较早的版本,开发人员则可以通过:
结论:
开发中能使用局部变量的,就不要使用在方法外定义。
使用逃逸分析,编译器可以对代码做如下优化:
JIT编译器在编译期间根据逃逸分析的结果,发现如果一个对象并没有逃逸出方法的话,就可能被优化成栈上分配。分配完成后,继续在调用栈内执行,最后线程结束,栈空间被回收,局部变量对象也被回收。这样就无须进行垃圾回收了。
常见的栈上分配的场景:(???应该是非栈上分配)
在逃逸分析中,已经说明了。分别是给成员变量赋值、方法返回值、实例引用传递。
public class StackAllocation {
public static void main(String[] args) throws InterruptedException {
long start = System.currentTimeMillis();
for (int i = 0; i < 100000000; i++) {
alloc();
}
long end = System.currentTimeMillis();
System.out.println("花费的时间为:" + (end - start) + " ms");
// 为了方便查看堆内存中对象个数,线程sleep
Thread.sleep(10000000);
}
private static void alloc() {
User user = new User();
}
static class User{
}
}
// 默认开启逃逸分析
// 花费的时间为:3 ms,
// User对象 ,没能发生逃逸,他们存储在栈中,随着栈的销毁而消失,(不触发GC)
// 关闭逃逸分析
// -Xmx1G -Xms1G -XX:+DoEscapeAnalysis -XX:+PrintGCDetails
// 花费的时间为:590 ms
// User对象 ,直接发生逃逸,储存在堆空间中(触发GC)
public void f() {
Object hellis = new Object();
synchronized(hellis) {
System.out.println(hellis);
}
}
代码中对hellis这个对象加锁,但是hellis对象的生命周期只在f()方法中,并不会被其他线程所访问到,所以在JIT编译阶段就会被优化掉,优化成:
public void f() {
Object hellis = new Object();
System.out.println(hellis);
}
public static void main(String args[]) {
alloc();
}
class Point {
private int x;
private int y;
}
private static void alloc() {
Point point = new Point(1,2);
System.out.println("point.x" + point.x + ";point.y" + point.y);
}
以上代码,经过标量替换后,就会变成
private static void alloc() {
int x = 1;
int y = 2;
System.out.println("point.x = " + x + "; point.y=" + y);
}
可以看到,Point这个聚合量经过逃逸分析后,发现他并没有逃逸,就被替换成两个聚合量了。那么标量替换有什么好处呢?就是可以大大减少堆内存的占用。因为一旦不需要创建对象了,那么就不再需要分配堆内存了。 标量替换为栈上分配提供了很好的基础。
上述代码在主函数中进行了1亿次alloc。调用进行对象创建,由于User对象实例需要占据约16字节的空间,因此累计分配空间达到将近1.5GB。如果堆空间小于这个值,就必然会发生GC。使用如下参数运行上述代码:
-server -Xmx10m -Xms10m -XX:+DoEscapeAnalysis -XX:+PrintGC -XX:+EliminateAllocations
/**
* 标量替换测试
* -Xmx100m -Xms100m -XX:+DoEscapeAnalysis -XX:+PrintGC -XX:-EliminateAllocations
*/
public class ScalarReplace {
public static class User {
public int id;//标量(无法再分解成更小的数据)
public String name;//聚合量(String还可以分解为char数组)
}
public static void alloc() {
User u = new User();//未发生逃逸
u.id = 5;
u.name = "www.atguigu.com";
}
public static void main(String[] args) {
long start = System.currentTimeMillis();
for (int i = 0; i < 10000000; i++) {
alloc();
}
long end = System.currentTimeMillis();
System.out.println("花费的时间为: " + (end - start) + " ms");
}
}
// 即使开启了逃逸分析但是没有开启标量替换,他还是会在堆上分配
即使开启了逃逸分析但是没有开启标量替换,他还是会在堆上分配
关于逃逸分析的论文在1999年就已经发表了,但直到JDK1.6才有实现,而且这项技术到如今也并不是十分成熟的。
其根本原因就是无法保证逃逸分析的性能消耗一定能高于他的消耗。虽然经过逃逸分析可以做标量替换、栈上分配、和锁消除。但是逃逸分析自身也是需要进行一系列复杂的分析的,这其实也是一个相对耗时的过程。 一个极端的例子,就是经过逃逸分析之后,发现没有一个对象是不逃逸的。那这个逃逸分析的过程就白白浪费掉了。
虽然这项技术并不十分成熟,但是它也是即时编译器优化技术中一个十分重要的手段。注意到有一些观点,认为通过逃逸分析,JVM会在栈上分配那些不会逃逸的对象,这在理论上是可行的,但是取决于JvM设计者的选择。据我所知,oracle Hotspot JVM中并未这么做,这一点在逃逸分析相关的文档里已经说明,所以可以明确所有的对象实例都是创建在堆上。
目前很多书籍还是基于JDK7以前的版本,JDK已经发生了很大变化,intern字符串的缓存和静态变量曾经都被分配在永久代上,而永久代已经被元数据区取代。但是,intern字符串缓存和静态变量并不是被转移到元数据区,而是直接在堆上分配,所以这一点同样符合前面一点的结论:对象实例都是分配在堆上。