- 3.Halcon3D点云滤波-降采样/去除离群点/直通滤波/平滑计算/凸包计算
黄晓魚
halcon3dPCL点云处理深度神经网络3d
对点云进行滤波的主要意义和目的有以下几点:去除噪声和异常值:由于设备本身的误差或环境因素的影响,采集到的点云数据中可能会包含一些噪声和异常值。这些噪声和异常值会影响后续的点云处理和分析,因此需要通过滤波处理加以去除。提高数据质量:滤波处理可以有效地提高点云数据的质量和精度,使得点云数据更加准确和可靠。这对于后续的点云处理和分析具有重要的意义。局部计算与调整:点云滤波主要通过局部计算的方式,获得一个
- 超级人类模型:机遇与挑战并存
XianxinMao
人工智能算法机器学习
标题:超级人类模型:机遇与挑战并存文章信息摘要:超级人类模型的对齐问题是人工智能领域最紧迫的挑战之一,既可能带来医疗、科学和经济等领域的巨大进步,也可能因认知鸿沟、失控风险和不可逆性导致灾难性后果。尽管OpenAI提出的“弱到强泛化”方法在某些任务上取得了一定成功,但其效果仍有限,且存在能力损失和任务依赖性等挑战。解决对齐问题需要提前研究、跨学科合作和国际协调,以确保超级人类模型的发展始终与人类价
- AnyPlace:学习机器人操作的泛化目标放置
硅谷秋水
计算机视觉大模型智能体机器人机器学习计算机视觉人工智能语言模型深度学习
25年2月来自多伦多大学、VectorInst、上海交大等机构的论文“AnyPlace:LearningGeneralizedObjectPlacementforRobotManipulation”。由于目标几何形状和放置的配置多种多样,因此在机器人任务中放置目标本身就具有挑战性。为了解决这个问题,AnyPlace,一种完全基于合成数据训练的两阶段方法,能够预测现实世界任务中各种可行的放置姿势。其
- Elasticjob在同一个实例上运行的多个分片任务
飞火流星02027
#云计算云原生微服务同一实例执行多个分片任务同一机器执行多个分片任务ElasticJob定时任务分片ElasticJob作业分片多个分片在同一个实例上执行分布式任务调度框架
一、#创作灵感#elasticjob在同一个实例上运行的多个分片任务(实例数量小于分片数量)很多贴子、AI说可以实际不可以,很可能是官方说明翻译时出现了误差每个分片由一个独立的作业服务器执行,可以同时处理多个分片,实现作业的并行执行(同时、并行都是指不同的服务器/实例之间并行)需求:作业需要分多片,但不不想启动太多pod/实例方案:当然这是有解决方案的。本文作者分享编程、配置两种实现方案二、环境-
- App自动化测试用例的录制与编写
霍格沃兹测试开发学社测试人社区
自动化测试用例测试开发软件测试
为什么需要自动化测试?手动测试方法虽然直观但常常难以应对复杂的多样化场景。而自动化测试恰恰填补了这一缺口。通过使用自动化测试框架,我们能够高效、快速地验证App功能的正确性,减少了人为失误的可能性。那么,自动化测试到底能做到哪些呢?高效性:一次录制的测试用例可以重复多次执行,节省大量测试时间。准确性:借助脚本,系统能够保持稳定的执行路径,减少人为操作带来的误差。可维护性:对于频繁更改的功能,自动化
- 基于泰勒展开改进的物理信息神经网络
天天酷科研
物理信息网络PINN神经网络人工智能深度学习
基于泰勒展开改进的物理信息神经网络一、引言1.1、研究背景和意义物理信息神经网络(PINN)作为一种结合物理模型和数据驱动的新型神经网络模型,近年来在科学计算和工程应用中展示了广泛的应用前景。PINN通过将物理定律嵌入到神经网络的损失函数中,能够在缺乏大量数据的情况下,有效地解决复杂的物理问题。这种方法不仅提高了模型的预测准确性,还增强了模型的泛化能力和解释性,因此在流体力学、材料科学、地球科学等
- 基于Python的人工智能驱动基因组变异算法:设计与应用(下)
Allen_LVyingbo
python医疗高效编程研发python人工智能算法健康医疗系统架构
3.3.2数据清洗与预处理在基因组变异分析中,原始数据往往包含各种噪声和不完整信息,数据清洗与预处理是确保分析结果准确性和可靠性的关键步骤。通过Python的相关库和工具,可以有效地去除噪声、填补缺失值、标准化数据等,为后续的分析提供高质量的数据基础。在基因组数据中,噪声数据可能来源于测序误差、实验操作不当等因素,这些噪声会干扰分析结果的准确性。使用Python的相关库和工具可以对数据进行过滤,去
- 彻底搞懂了 泛型上下边界!跟普通泛型比,抽象层级都不同!
弹唱Tan
java语言
和是Java泛型中的“通配符(Wildcards)”和“边界(Bounds)”的概念。:是指“上界通配符(UpperBoundsWildcards)”:是指“下界通配符(LowerBoundsWildcards)泛型可以是看成容器里元素的尺子。往容器里放,元素必须比每把尺子都要小;取出的时候,必须用比最大的尺子还要大的引用来接收::这里T就是对元素要求的尺子;尺子只有T一把和:这里面的?是对尺子的
- 数字身份与元宇宙
Aohan_傲瀚
网络
1数字身份应用存在的痛点、难点问题数据身份,是一种以真实身份信息为基础,通过数字代码形式流通于网络空间中的可供查询和识别的公共密钥。对于个人和机构实体,数字身份由早期的互联网传统账号发展为多账号一键登录授权管理,再到个人或机构实体本身所有、所管、所控的去中心化身份;对于以物联网为基础的其他生物和物品实体,数字身份可泛化至任意生物、任意物品的工业互联网标识,如阳澄湖大闸蟹的生态标识、智能井盖的管理标
- 策略泛化的无动作推理
硅谷秋水
智能体大模型计算机视觉人工智能深度学习机器学习计算机视觉语言模型
25年2月来自斯坦福的论文“Action-FreeReasoningforPolicyGeneralization”。端到端模仿学习为训练机器人策略提供一种有前途的方法。然而,泛化到新环境(例如未见过的场景、任务和目标实例)仍然是一项重大挑战。尽管大规模机器人演示数据集已显示出诱导泛化的潜力,但它们的规模化需要大量资源。相比之下,人类视频数据丰富多样,提供一种有吸引力的替代方案。然而,这些人类视频
- 深度学习-与OCR结合
小赖同学啊
人工智能深度学习ocr人工智能
光学字符识别(OCR)旨在将图像中的文本信息转换为计算机可编辑的文本,深度学习技术能够显著提升OCR的准确性和泛化能力。下面为你介绍如何将深度学习与OCR结合,同时给出使用Python和相关库实现的代码示例。整体思路结合深度学习实现OCR通常包含以下几个步骤:数据准备:收集和标注包含文本的图像数据,构建训练集和测试集。模型构建:选择合适的深度学习模型,如卷积神经网络(CNN)结合循环神经网络(RN
- 如何训练自己的数据集之——无人机视觉定位数据集,视觉定位,无人机视觉定位数据集无人机图像的空间分辨率
计算机c9硕士算法工程师
数据集遥感类数据集无人机类数据集无人机卫星影像空间无人机视觉定位数据集遥感影像视觉定位
无人机视觉定位数据集,将无人机拍摄的地面俯视图与相应的遥感影像进行匹配,可以实现无人机的精确快速定位,且不会产生误差累积,能作为当前无人机组合导航系统的重要补充,无人机影像收集自国内多个地区,涵盖不同地形特征和大部分国内地区;匹配的底图影像则是从谷歌地图获取的卫星图像。数据集旨在通过提供多样化的数据来支持无人机视觉定位模型的训练和测试。该数据集包含6,742幅无人机图像和11幅卫星影像。无人机图像
- 线性调整器——耗能型调整器
ོ椿生拥蝶
硬件工程
线性调整器又称线性电压调节器,以下是关于它的介绍:基本工作原理线性调整器的基本电路如图1.1(a)所示,晶体管Q1(工作于线性状态,或非开关状态)构成一个连接直流源V和输出端V。的可调电气电阻,直流源V由60Hz隔离变压器(电气隔离和整流),整流桥和储能电容C构成的电路产生,输出端V.用于连接外部负载。在图中,R1和R2组成的分压网络对输出电压采样,采样电压输入到误差放大器同参考电压进行比较,误差
- 验证二叉搜索树——力扣98
hazel爱吃肉
算法刷题笔记leetcode算法职场和发展
题目描述二叉搜索树BST定义:1)左子树节点值=上界,则不满足;否则,依次递归左子树,将上界修改为根节点值,递归右子树,将下界修改为根节点值复杂度分析classSolution
- DeepSeek这样提问更加精确!
即兴小索奇
ChatGPT&AIDeepSeekDeepSeek
相信很多朋友在使用DeepSeek时,都会遇到一个问题:提了问题之后,得到的回答似乎不完全符合自己的需求。究其原因,大多是提问的方式不够精准,导致了答案的泛化。那么,如何让提问更高效呢?不要简单地问这是什么很多时候,我们习惯性地问类似“什么是区块链?”这样的简单问题。虽然这个问题不难理解,但也太过宽泛了。DeepSeek并不会自动推断出你想要的深度或具体答案。如果你能进一步说明你对区块链的了解程度
- 光学分辨率转换公式
胖墩会武术
深度学习图像配准1024程序员节python光学分辨率
文章目录一、光学分辨率(OpticalResolution)1.1、光学显微镜的分辨率极限(理论-公式-计算)1.2、光学误差1.3、放大倍率与分辨率的关系二、光学分辨率转换2.1、技术方法2.2、挑战与注意事项2.3、转换公式2.4、项目实战一、光学分辨率(OpticalResolution)光学分辨率:指的是显微镜或其他光学成像设备能够区分两个物体或细节的最小距离。光学分辨率越高,表示设备能够
- 工业镜头的重要参数之视场、放大倍率、芯片尺寸--51camera
51camera
工业相机工业镜头
今天来简单介绍下工业镜头中常用的参数中的三个:1、视场视场(FOV)也称视野,是指能被视觉系统观察到的物方可视范围。对于镜头而言,可观察到的视场跟镜头放大倍率及相机芯片选择有关。因此需要根据被观察物体的尺寸,先确定所需的视场,再确定相机芯片尺寸及镜头放大倍率。在实际工程项目中,考虑到机械误差等问题,视场通常要大于待观测物体的实际尺寸,以确保在机械误差的范围内,物体始终位于视觉系统的可视范围内。2、
- 【基于PSINS】CKF滤波,观测量为航向角、位置、速度(共7维),附完整代码
MATLAB卡尔曼
基于PSINS工具箱的程序设计matlab开发语言
本代码基于PSINS工具箱实现了一个15维状态的容积卡尔曼滤波(CKF)算法,用于SINS/GPS组合导航系统。该算法在原有仅速度观测的CKF153模型基础上改进,新增位置、航向角作为观测输入,提升了导航精度。文章目录运行结果完整代码核心功能代码改进点实现流程关键函数说明运行结果总结以下是代码的核心功能与实现流程:运行结果三维轨迹:三轴位置误差曲线:三轴速度误差曲线:
- 一切皆是映射:量子机器学习与传统元学习的融合
AI天才研究院
DeepSeekR1&大数据AI人工智能大模型AI大模型企业级应用开发实战计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
1.背景介绍1.1人工智能的瓶颈当前,人工智能(AI)取得了令人瞩目的进步,尤其是在图像识别、自然语言处理等领域。然而,AI仍然面临着一些瓶颈,例如:数据依赖性:AI模型通常需要大量的训练数据才能达到良好的性能,而获取和标注这些数据往往成本高昂。泛化能力:AI模型在面对未见过的数据时,泛化能力往往不足,容易出现过拟合等问题。可解释性:AI模型的决策过程往往难以解释,这限制了其在一些关键领域的应用。
- 如何理解六西格玛MSA测量系统分析中的线性
张驰课堂
六西格玛案例六西格玛培训六西格玛考试概率论深度学习经验分享
首先我们来了解六西格玛MSA测量系统分析是什么?比如我们去菜市场买菜,经常会遇到缺斤短两的问题,比如把八两称成一斤,这就叫数据的误差。那么这种误差,是通过测量得来的。我们通过针对这种误差的评估,就叫MSA测量系统分析。MSA测量系统分析的构成包括:测量的人员、被测量的零件、测量仪器、测量方法、测量环境等等。比如说这个商贩来测,他是八斤称成一斤,然后市场管理人员来测的话,八两还是八两,那么今天测是一
- 串口通信USART的波特率误差计算GD32、STM32
kongba007
GD32碎片知识单片机stm32物联网嵌入式gd32
UART通信的误差计算:接收方与发送方频率不准,可能引起累积误差?晶振时间积累误差比如发送器和接收器,两边的晶振,发生了最大的相反方向的漂移,内置8MHz晶振误差精度0.5%,两边累积最大误差达到1%内置8MHz晶振,实际则为8MHz*(+-1.005)=7.96MHz~8.04MHz接收方和发送方,晶振都不准,这将对通信产生不确定影响。下图是两个晶振的误差对比晶振频率精度60s误差ms误差us误
- 接入deepseek构建RAG企业智能问答系统
da pai ge
prometheuskubernetesjavascript
RAG基础流程AI大模型回答问题的方式AI大模型基于其训练的数据回答所有问题。如果未针对特定业务(如美团)进行专门“学习”,面对直接相关的问题时,无法给出理想的答案。让AI大模型“学习”业务知识的两种主要方法:微调(Fine-Tuning):在预训练模型基础上根据特定任务和数据集调整参数。RAG(Retrieval-AugmentedGeneration,检索增强生成):使用泛化的大模型,通过对问
- 团体程序设计天梯赛-练习集——L1-031 到底是不是太胖了
SY师弟
GPLT天梯赛c++数据结构开发语言c语言算法GPLT团队程序设计天梯赛
前言没想到,这题还能搞一个同系列的出来,这个10分相对来说就合适点了,同宗题团体程序设计天梯赛-练习集——L1-029是不是太胖了L1-031到底是不是太胖了据说一个人的标准体重应该是其身高(单位:厘米)减去100、再乘以0.9所得到的公斤数。真实体重与标准体重误差在10%以内都是完美身材(即|真实体重−标准体重|doublesc(doubleh)//计算完美身材{h-=100;h*=0.9;h*
- 深度学习的算法在人群计数(数人头)
人工智能专属驿站
计算机视觉
基于深度学习的算法在人群计数(数人头)任务中表现较为出色,尤其是在处理复杂场景和大规模数据集时。以下是几种被广泛认为效果较好的算法类别及其特点:1.基于卷积神经网络(CNN)的算法特点:利用CNN的强大特征提取能力,直接从图像中学习人群计数的特征。优势:高精度:能够自动学习复杂的特征,适合处理大规模数据集。泛化能力强:通过大量数据训练,模型能够适应不同的场景和人群密度。代表算法:MCNN(Mult
- (62)使用RLS自适应滤波器进行系统辨识的MATLAB仿真
通信仿真实验室
matlab信号处理通信系统通信算法开发语言自适应滤波器RLS
文章目录前言一、基本概念二、RLS算法原理三、RLS算法的典型应用场景四、MATLAB仿真代码五、仿真结果1.滤波器的输入信号、参考信号、输出信号、误差信号2.对未知系统进行辨识得到的系数总结与后续前言RLS(递归最小二乘)自适应滤波器是一种用于系统辨识和信号处理的算法,其原理基于最小二乘法。系统辨识是指从输入输出数据中估计或建模一个动态系统的过程。在RLS自适应滤波器中,目的是找到滤波器系数,使
- 从零开始人工智能Matlab案例-线性回归与梯度下降算法
算法工程师y
人工智能算法matlab
案例背景假设某饮料公司想预测气温变化对饮料销量的影响。使用线性回归模型拟合历史数据,并通过梯度下降算法优化模型参数,动态展示参数更新如何逐步降低预测误差。算法原理Matlab实现与动态可视化1.生成带噪声的线性数据rng(42);%固定随机种子x=0:0.5:20;%温度(℃)y=2.5*x+10+8*randn(size(x));%销量(添加高斯噪声)%可视化数据figure;scatter(x
- 【深度学习】L1损失、L2损失、L1正则化、L2正则化
小小小小祥
深度学习人工智能算法机器学习
文章目录1.L1损失(L1Loss)2.L2损失(L2Loss)3.L1正则化(L1Regularization)4.L2正则化(L2Regularization)5.总结5.1为什么L1正则化会产生稀疏解L2正则化会让权重变小L1损失、L2损失、L1正则化、L2正则化是机器学习中常用的损失函数和正则化技术,它们在优化过程中起着至关重要的作用。它们的作用分别在于如何计算模型误差和如何控制模型的复杂
- 蓝桥杯真题 - 冶炼金属 - 题解
ExRoc
蓝桥杯c++算法
题目链接:https://www.lanqiao.cn/problems/3510/learning/个人评价:难度2星(满星:5)前置知识:二分整体思路二分得到满足条件的最大值与最小值,这里以二分最大值为例(最小值同理):如果“满足条件”,就提高下界,否则降低上界,最终答案为下界(因为下界是满足条件的那一个);所有小于等于下界的都应该认为是“满足条件”的,这里的条件是指:对于任意i∈[1,n]i
- 图神经网络实战(8)——图注意力网络(Graph Attention Networks, GAT)
盼小辉丶
图神经网络从入门到项目实战图神经网络pytorch图注意力网络GNN
图神经网络实战(8)——图注意力网络0.前言1.图注意力层原理1.1线性变换1.2激活函数1.3Softmax归一化1.4多头注意力1.5改进图注意力层2.使用NumPy中实现图注意力层3.使用PyTorchGeometric实现GAT3.1在Cora数据集上训练GAT模型3.2在CiteSeer数据集上训练GAT模型3.3误差分析小结系列链接0.前言图注意力网络(GraphAttentionNe
- AI大语言模型的全面解读
草莓屁屁我不吃
人工智能语言模型自然语言处理chatgpt
大语言模型(LargeLanguageModels,LLMs)无疑是近年来最耀眼的星辰之一。他们以惊人的语言生成能力、上下文理解能力以及对复杂任务的泛化能力,正在深刻改变着自然语言处理(NLP)乃至整个AI领域的格局。本文将从专业角度深入剖析AI大语言模型的核心技术、发展历程、应用场景,并通过具体数据展现其影响力和未来趋势。一、大语言模型的定义大语言模型是深度学习的应用之一,尤其在自然语言处理(N
- 强大的销售团队背后 竟然是大数据分析的身影
蓝儿唯美
数据分析
Mark Roberge是HubSpot的首席财务官,在招聘销售职位时使用了大量数据分析。但是科技并没有挤走直觉。
大家都知道数理学家实际上已经渗透到了各行各业。这些热衷数据的人们通过处理数据理解商业流程的各个方面,以重组弱点,增强优势。
Mark Roberge是美国HubSpot公司的首席财务官,HubSpot公司在构架集客营销现象方面出过一份力——因此他也是一位数理学家。他使用数据分析
- Haproxy+Keepalived高可用双机单活
bylijinnan
负载均衡keepalivedhaproxy高可用
我们的应用MyApp不支持集群,但要求双机单活(两台机器:master和slave):
1.正常情况下,只有master启动MyApp并提供服务
2.当master发生故障时,slave自动启动本机的MyApp,同时虚拟IP漂移至slave,保持对外提供服务的IP和端口不变
F5据说也能满足上面的需求,但F5的通常用法都是双机双活,单活的话还没研究过
服务器资源
10.7
- eclipse编辑器中文乱码问题解决
0624chenhong
eclipse乱码
使用Eclipse编辑文件经常出现中文乱码或者文件中有中文不能保存的问题,Eclipse提供了灵活的设置文件编码格式的选项,我们可以通过设置编码 格式解决乱码问题。在Eclipse可以从几个层面设置编码格式:Workspace、Project、Content Type、File
本文以Eclipse 3.3(英文)为例加以说明:
1. 设置Workspace的编码格式:
Windows-&g
- 基础篇--resources资源
不懂事的小屁孩
android
最近一直在做java开发,偶尔敲点android代码,突然发现有些基础给忘记了,今天用半天时间温顾一下resources的资源。
String.xml 字符串资源 涉及国际化问题
http://www.2cto.com/kf/201302/190394.html
string-array
- 接上篇补上window平台自动上传证书文件的批处理问卷
酷的飞上天空
window
@echo off
: host=服务器证书域名或ip,需要和部署时服务器的域名或ip一致 ou=公司名称, o=公司名称
set host=localhost
set ou=localhost
set o=localhost
set password=123456
set validity=3650
set salias=s
- 企业物联网大潮涌动:如何做好准备?
蓝儿唯美
企业
物联网的可能性也许是无限的。要找出架构师可以做好准备的领域然后利用日益连接的世界。
尽管物联网(IoT)还很新,企业架构师现在也应该为一个连接更加紧密的未来做好计划,而不是跟上闸门被打开后的集成挑战。“问题不在于物联网正在进入哪些领域,而是哪些地方物联网没有在企业推进,” Gartner研究总监Mike Walker说。
Gartner预测到2020年物联网设备安装量将达260亿,这些设备在全
- spring学习——数据库(mybatis持久化框架配置)
a-john
mybatis
Spring提供了一组数据访问框架,集成了多种数据访问技术。无论是JDBC,iBATIS(mybatis)还是Hibernate,Spring都能够帮助消除持久化代码中单调枯燥的数据访问逻辑。可以依赖Spring来处理底层的数据访问。
mybatis是一种Spring持久化框架,要使用mybatis,就要做好相应的配置:
1,配置数据源。有很多数据源可以选择,如:DBCP,JDBC,aliba
- Java静态代理、动态代理实例
aijuans
Java静态代理
采用Java代理模式,代理类通过调用委托类对象的方法,来提供特定的服务。委托类需要实现一个业务接口,代理类返回委托类的实例接口对象。
按照代理类的创建时期,可以分为:静态代理和动态代理。
所谓静态代理: 指程序员创建好代理类,编译时直接生成代理类的字节码文件。
所谓动态代理: 在程序运行时,通过反射机制动态生成代理类。
一、静态代理类实例:
1、Serivce.ja
- Struts1与Struts2的12点区别
asia007
Struts1与Struts2
1) 在Action实现类方面的对比:Struts 1要求Action类继承一个抽象基类;Struts 1的一个具体问题是使用抽象类编程而不是接口。Struts 2 Action类可以实现一个Action接口,也可以实现其他接口,使可选和定制的服务成为可能。Struts 2提供一个ActionSupport基类去实现常用的接口。即使Action接口不是必须实现的,只有一个包含execute方法的P
- 初学者要多看看帮助文档 不要用js来写Jquery的代码
百合不是茶
jqueryjs
解析json数据的时候需要将解析的数据写到文本框中, 出现了用js来写Jquery代码的问题;
1, JQuery的赋值 有问题
代码如下: data.username 表示的是: 网易
$("#use
- 经理怎么和员工搞好关系和信任
bijian1013
团队项目管理管理
产品经理应该有坚实的专业基础,这里的基础包括产品方向和产品策略的把握,包括设计,也包括对技术的理解和见识,对运营和市场的敏感,以及良好的沟通和协作能力。换言之,既然是产品经理,整个产品的方方面面都应该能摸得出门道。这也不懂那也不懂,如何让人信服?如何让自己懂?就是不断学习,不仅仅从书本中,更从平时和各种角色的沟通
- 如何为rich:tree不同类型节点设置右键菜单
sunjing
contextMenutreeRichfaces
组合使用target和targetSelector就可以啦,如下: <rich:tree id="ruleTree" value="#{treeAction.ruleTree}" var="node" nodeType="#{node.type}"
selectionChangeListener=&qu
- 【Redis二】Redis2.8.17搭建主从复制环境
bit1129
redis
开始使用Redis2.8.17
Redis第一篇在Redis2.4.5上搭建主从复制环境,对它的主从复制的工作机制,真正的惊呆了。不知道Redis2.8.17的主从复制机制是怎样的,Redis到了2.4.5这个版本,主从复制还做成那样,Impossible is nothing! 本篇把主从复制环境再搭一遍看看效果,这次在Unbuntu上用官方支持的版本。 Ubuntu上安装Red
- JSONObject转换JSON--将Date转换为指定格式
白糖_
JSONObject
项目中,经常会用JSONObject插件将JavaBean或List<JavaBean>转换为JSON格式的字符串,而JavaBean的属性有时候会有java.util.Date这个类型的时间对象,这时JSONObject默认会将Date属性转换成这样的格式:
{"nanos":0,"time":-27076233600000,
- JavaScript语言精粹读书笔记
braveCS
JavaScript
【经典用法】:
//①定义新方法
Function .prototype.method=function(name, func){
this.prototype[name]=func;
return this;
}
//②给Object增加一个create方法,这个方法创建一个使用原对
- 编程之美-找符合条件的整数 用字符串来表示大整数避免溢出
bylijinnan
编程之美
import java.util.LinkedList;
public class FindInteger {
/**
* 编程之美 找符合条件的整数 用字符串来表示大整数避免溢出
* 题目:任意给定一个正整数N,求一个最小的正整数M(M>1),使得N*M的十进制表示形式里只含有1和0
*
* 假设当前正在搜索由0,1组成的K位十进制数
- 读书笔记
chengxuyuancsdn
读书笔记
1、Struts访问资源
2、把静态参数传递给一个动作
3、<result>type属性
4、s:iterator、s:if c:forEach
5、StringBuilder和StringBuffer
6、spring配置拦截器
1、访问资源
(1)通过ServletActionContext对象和实现ServletContextAware,ServletReque
- [通讯与电力]光网城市建设的一些问题
comsci
问题
信号防护的问题,前面已经说过了,这里要说光网交换机与市电保障的关系
我们过去用的ADSL线路,因为是电话线,在小区和街道电力中断的情况下,只要在家里用笔记本电脑+蓄电池,连接ADSL,同样可以上网........
- oracle 空间RESUMABLE
daizj
oracle空间不足RESUMABLE错误挂起
空间RESUMABLE操作 转
Oracle从9i开始引入这个功能,当出现空间不足等相关的错误时,Oracle可以不是马上返回错误信息,并回滚当前的操作,而是将操作挂起,直到挂起时间超过RESUMABLE TIMEOUT,或者空间不足的错误被解决。
这一篇简单介绍空间RESUMABLE的例子。
第一次碰到这个特性是在一次安装9i数据库的过程中,在利用D
- 重构第一次写的线程池
dieslrae
线程池 python
最近没有什么学习欲望,修改之前的线程池的计划一直搁置,这几天比较闲,还是做了一次重构,由之前的2个类拆分为现在的4个类.
1、首先是工作线程类:TaskThread,此类为一个工作线程,用于完成一个工作任务,提供等待(wait),继续(proceed),绑定任务(bindTask)等方法
#!/usr/bin/env python
# -*- coding:utf8 -*-
- C语言学习六指针
dcj3sjt126com
c
初识指针,简单示例程序:
/*
指针就是地址,地址就是指针
地址就是内存单元的编号
指针变量是存放地址的变量
指针和指针变量是两个不同的概念
但是要注意: 通常我们叙述时会把指针变量简称为指针,实际它们含义并不一样
*/
# include <stdio.h>
int main(void)
{
int * p; // p是变量的名字, int *
- yii2 beforeSave afterSave beforeDelete
dcj3sjt126com
delete
public function afterSave($insert, $changedAttributes)
{
parent::afterSave($insert, $changedAttributes);
if($insert) {
//这里是新增数据
} else {
//这里是更新数据
}
}
- timertask
shuizhaosi888
timertask
java.util.Timer timer = new java.util.Timer(true);
// true 说明这个timer以daemon方式运行(优先级低,
// 程序结束timer也自动结束),注意,javax.swing
// 包中也有一个Timer类,如果import中用到swing包,
// 要注意名字的冲突。
TimerTask task = new
- Spring Security(13)——session管理
234390216
sessionSpring Security攻击保护超时
session管理
目录
1.1 检测session超时
1.2 concurrency-control
1.3 session 固定攻击保护
- 公司项目NODEJS实践0.3[ mongo / session ...]
逐行分析JS源代码
mongodbsessionnodejs
http://www.upopen.cn
一、前言
书接上回,我们搭建了WEB服务端路由、模板等功能,完成了register 通过ajax与后端的通信,今天主要完成数据与mongodb的存取,实现注册 / 登录 /
- pojo.vo.po.domain区别
LiaoJuncai
javaVOPOJOjavabeandomain
POJO = "Plain Old Java Object",是MartinFowler等发明的一个术语,用来表示普通的Java对象,不是JavaBean, EntityBean 或者 SessionBean。POJO不但当任何特殊的角色,也不实现任何特殊的Java框架的接口如,EJB, JDBC等等。
即POJO是一个简单的普通的Java对象,它包含业务逻辑
- Windows Error Code
OhMyCC
windows
0 操作成功完成.
1 功能错误.
2 系统找不到指定的文件.
3 系统找不到指定的路径.
4 系统无法打开文件.
5 拒绝访问.
6 句柄无效.
7 存储控制块被损坏.
8 存储空间不足, 无法处理此命令.
9 存储控制块地址无效.
10 环境错误.
11 试图加载格式错误的程序.
12 访问码无效.
13 数据无效.
14 存储器不足, 无法完成此操作.
15 系
- 在storm集群环境下发布Topology
roadrunners
集群stormtopologyspoutbolt
storm的topology设计和开发就略过了。本章主要来说说如何在storm的集群环境中,通过storm的管理命令来发布和管理集群中的topology。
1、打包
打包插件是使用maven提供的maven-shade-plugin,详细见maven-shade-plugin。
<plugin>
<groupId>org.apache.maven.
- 为什么不允许代码里出现“魔数”
tomcat_oracle
java
在一个新项目中,我最先做的事情之一,就是建立使用诸如Checkstyle和Findbugs之类工具的准则。目的是制定一些代码规范,以及避免通过静态代码分析就能够检测到的bug。 迟早会有人给出案例说这样太离谱了。其中的一个案例是Checkstyle的魔数检查。它会对任何没有定义常量就使用的数字字面量给出警告,除了-1、0、1和2。 很多开发者在这个检查方面都有问题,这可以从结果
- zoj 3511 Cake Robbery(线段树)
阿尔萨斯
线段树
题目链接:zoj 3511 Cake Robbery
题目大意:就是有一个N边形的蛋糕,切M刀,从中挑选一块边数最多的,保证没有两条边重叠。
解题思路:有多少个顶点即为有多少条边,所以直接按照切刀切掉点的个数排序,然后用线段树维护剩下的还有哪些点。
#include <cstdio>
#include <cstring>
#include <vector&