04数据平台Flume

Flume 功能

04数据平台Flume_第1张图片
Flume主要作用,就是实时读取服务器本地磁盘数据,将数据写入到 HDFS。

Flume是 Cloudera提供的高可用,高可靠性,分布式的海量日志采集、聚合和传输的系统工具。

Flume 架构

Flume组成架构如下图所示:
04数据平台Flume_第2张图片

Agent

每个 Agent 代表着一个 JVM 进程,它以事件的方式将数据从源头送至目的地。
Agent 由 3 个部分组成,Source、Channel、Sink。

  • Source:Source是负责接收数据到Flume Agent 的组件,Source 组件可以处理各种类型、各种格式的日志数据。
  • Sink:Sink不断轮询Channel中的事件并且批量移除他们,并将这些数据批量写入到存储或者索引系统,或被发送到另一个Flume Agent。
  • Channel:Channel是位于Source 和Sink 之间的缓冲区。因此,Channel允许 Source和 Sink 有不同的运行速率。Channel 是线程安全的, 可以同时处理几个 Source 的写操作和多个 Sink 的读操作。
    Flume自带两种 Channel:Memory Channel 和File Channel。
    Memory Channel 是一个内存队列,Source将事件写入其尾部,Sink从其头部读取事件。 Memory Channel 将源写入的事件存储在堆上。由于它将所有数据存储在内存中,因此提供了高吞吐量。 它最适合那些不担心数据丢失的流。 它不适合涉及数据丢失的数据流。
    File Channel将所有事件写到磁盘。因此在程序关闭或机器宕机的情况下不会丢失数据。
  • Event:Flume 传输数据的基本单元,数据以 Event的形式将数据从源头送至目的地。Event由Header 和 Body 组成,Header用来存放event 的属性,为 K-V结构,Body 用于存放数据,为字节数组结构。

安装 flume

话不多说,直接开始安装 flume。

  1. 前往 http://archive.apache.org/dist/flume/ , 选择1.9.0
  2. 将apache-flume-1.9.0-bin.tar.gz使用 sftp上传到linux的/opt/software目录下
    04数据平台Flume_第3张图片
  3. 解压apache-flume-1.9.0-bin.tar.gz到/opt/module/目录下
[logan@hadoop101 hadoop]$ tar -zxf /opt/software/apache-flume-1.9.0-bin.tar.gz -C /opt/module/
  1. 创建软链接
cd /opt/module
ln -snf flume-1.9.0/ flume
  1. 删除jar 包,否则会报错
cd /opt/module/flume
rm lib/guava-11.0.2.jar

注意删除guava,一定要配置 Hadoop 环境变量,否则会报错:

Caused by: java.lang.ClassNotFoundException: com.google.common.collect.Lists
        at java.net.URLClassLoader.findClass(URLClassLoader.java:382)
        at java.lang.ClassLoader.loadClass(ClassLoader.java:424)
        at sun.misc.Launcher$AppClassLoader.loadClass(Launcher.java:349)
        at java.lang.ClassLoader.loadClass(ClassLoader.java:357)
        ... 1 more
  1. 修改log4j.properties配置文件
[logan@hadoop101 flume]$ vim conf/log4j.properties 
# 注意是修改内容
flume.log.dir=/opt/module/flume/logs
  1. 验证 flume
[logan@hadoop101 flume]$ /opt/module/flume/bin/flume-ng version
Flume 1.9.0
Source code repository: https://git-wip-us.apache.org/repos/asf/flume.git
Revision: d4fcab4f501d41597bc616921329a4339f73585e
Compiled by fszabo on Mon Dec 17 20:45:25 CET 2018
From source with checksum 35db629a3bda49d23e9b3690c80737f9

Flume日志采集

配置解析

需要采集的日志文件分布在hadoop101,hadoop102两台日志服务器,故需要在hadoop101,hadoop102上配置日志采集 Flume。Flume需要采集日志文件内容,并对日志格式(JSON)进行校验,然后将校验通过的日志发送到 Kafka。
此处选择TailDirSource和 KafkaChannel。

  • TailDirSource优势:支持断点续传、多目录。
  • KafkaChannel优势:省去了 Sink,提高了效率。
  • 日志采集 Flume关键配置 :
    04数据平台Flume_第4张图片

Flume日志采集配置

  1. 创建Flume 配置文件
[logan@hadoop101 flume]$ pwd
/opt/module/flume
[logan@hadoop101 flume]$ mkdir job
[logan@hadoop101 flume]$ vim job/file_to_kafka.conf
#定义组件
a1.sources = r1
a1.channels = c1

#配置source
a1.sources.r1.type = TAILDIR
a1.sources.r1.filegroups = f1
a1.sources.r1.filegroups.f1 = /opt/module/applog/log/app.*
a1.sources.r1.positionFile = /opt/module/flume/taildir_position.json
a1.sources.r1.interceptors =  i1
a1.sources.r1.interceptors.i1.type = com.logan.gmall.flume.interceptor.ETLInterceptor$Builder

#配置channel
a1.channels.c1.type = org.apache.flume.channel.kafka.KafkaChannel
a1.channels.c1.kafka.bootstrap.servers = hadoop101:9092
a1.channels.c1.kafka.topic = topic_log
a1.channels.c1.parseAsFlumeEvent = false

#组装 
a1.sources.r1.channels = c1
  1. 编写拦截器
    • 创建Maven工程flume-interceptor
    • 创建包:com.logan.gmall.flume.interceptor
    • 在pom.xml文件中添加如下配置
    
        
            org.apache.flume
            flume-ng-core
            1.9.0
            provided
        
    
        
            com.alibaba
            fastjson
            1.2.62
        
    
    
    
        
            
                org.apache.maven.plugins
                maven-compiler-plugin
                2.4
                
                    1.8
                    1.8
                
            
            
                maven-assembly-plugin
                
                    
                        jar-with-dependencies
                    
                
                
                    
                        make-assembly
                        package
                        
                            single
                        
                    
                
            
        
    
    
    • 在com.logan.gmall.flume.utils包下创建JSONUtil类
    package com.logan.gmall.flume.utils;
    
    import com.alibaba.fastjson.JSON;
    import com.alibaba.fastjson.JSONException;
    
    public class JSONUtil {
        /**
         * 通过异常判定是否是JSON字符串
         */
        public static boolean isJSONValidate(String input){
            try {
                JSON.parseObject(input);
                return true;
            } catch (JSONException e) {
                return false;
            }
        }
    }
    
    • 在com.logan.gmall.flume.interceptor包下创建ETLInterceptor类
    package com.logan.gmall.flume.interceptor;
    
    import com.logan.gmall.flume.utils.JSONUtil;
    import org.apache.flume.Context;
    import org.apache.flume.Event;
    import org.apache.flume.interceptor.Interceptor;
    
    import java.nio.charset.StandardCharsets;
    import java.util.Iterator;
    import java.util.List;
    
    public class ETLInterceptor implements Interceptor {
        @Override
        public void initialize() {
    
        }
    
        @Override
        public Event intercept(Event event) {
    
            //1、获取body当中的数据并转成字符串
            byte[] body = event.getBody();
            String log = new String(body, StandardCharsets.UTF_8);
            //2、判断字符串是否是一个合法的json,是:返回当前event;不是:返回null
            if (JSONUtil.isJSONValidate(log)) {
                return event;
            } else {
                return null;
            }
        }
    
    
        @Override
        public List intercept(List list) {
    
            Iterator iterator = list.iterator();
    
            while (iterator.hasNext()){
                Event next = iterator.next();
                if(intercept(next)==null){
                    iterator.remove();
                }
            }
    
            return list;
        }
    
        public static class Builder implements Interceptor.Builder{
    
            @Override
            public Interceptor build() {
                return new ETLInterceptor();
            }
    
            @Override
            public void configure(Context context) {
    
            }
        }
    
    
        @Override
        public void close() {
    
        }
    }
    
    • 打包
      04数据平台Flume_第5张图片
    • 将打包文件放到hadoop101 的/opt/moduie/flume/lib文件夹下

采集测试

  1. 启动Zookeeper、Kafka集群
  2. 启动 hadoop101上的日志采集Flume
[logan@hadoop101 flume]$ bin/flume-ng agent -n a1 -c conf/ -f job/file_to_kafka.conf -Dflume.root.logger=info,console
  1. 启动一个Kafka的Console-Consumer
[logan@hadoop101 kafka]$ bin/kafka-console-consumer.sh --bootstrap-server hadoop11:9092 --topic topic_log
  1. 生成模拟数据
[logan@hadoop101 module]$ mkdir -p /opt/module/applog/log/
[logan@hadoop101 module]$ vim /opt/module/applog/log/app.2023-12-02.log
{"common":{"ar":"500000","ba":"iPhone","ch":"Appstore","is_new":"1","md":"iPhone Xs","mid":"mid_552171","os":"iOS 13.3.1","uid":"919","vc":"v2.1.134"},"displays":[{"display_type":"activity","item":"1","item_type":"activity_id","order":1,"pos_id":5},{"display_type":"activity","item":"2","item_type":"activity_id","order":2,"pos_id":5},{"display_type":"query","item":"19","item_type":"sku_id","order":3,"pos_id":4},{"display_type":"query","item":"3","item_type":"sku_id","order":4,"pos_id":2},{"display_type":"query","item":"5","item_type":"sku_id","order":5,"pos_id":2},{"display_type":"promotion","item":"19","item_type":"sku_id","order":6,"pos_id":4},{"display_type":"query","item":"14","item_type":"sku_id","order":7,"pos_id":2},{"display_type":"query","item":"9","item_type":"sku_id","order":8,"pos_id":2},{"display_type":"promotion","item":"35","item_type":"sku_id","order":9,"pos_id":1}],"page":{"during_time":9853,"page_id":"home"},"ts":1672512476000}
{"actions":[{"action_id":"favor_add","item":"9","item_type":"sku_id","ts":1672512480386},{"action_id":"get_coupon","item":"2","item_type":"coupon_id","ts":1672512483772}],"common":{"ar":"500000","ba":"iPhone","ch":"Appstore","is_new":"1","md":"iPhone Xs","mid":"mid_552171","os":"iOS 13.3.1","uid":"919","vc":"v2.1.134"},"displays":[{"display_type":"promotion","item":"19","item_type":"sku_id","order":1,"pos_id":4},{"display_type":"promotion","item":"14","item_type":"sku_id","order":2,"pos_id":5},{"display_type":"query","item":"21","item_type":"sku_id","order":3,"pos_id":1},{"display_type":"query","item":"11","item_type":"sku_id","order":4,"pos_id":2},{"display_type":"promotion","item":"28","item_type":"sku_id","order":5,"pos_id":1}],"page":{"during_time":10158,"item":"9","item_type":"sku_id","last_page_id":"home","page_id":"good_detail","source_type":"promotion"},"ts":1672512477000}
  1. 观察kafka是否有消费到数据

你可能感兴趣的:(数据仓库,数据仓库,flume,大数据)