- 多表代替密码与维吉尼亚密码:古典密码学的“动态魔法”
算法第二深情
密码学密码学
一、多表代替密码:从“固定规则”到“动态变化”的密码革命1.定义与核心思想多表代替密码(PolyalphabeticSubstitutionCipher)是古典密码学的巅峰之作,其核心思想是“用多个替换表轮换加密”,彻底打破单表代替密码(如凯撒密码)的频率分析漏洞。单表代替密码的弱点:单表密码(如凯撒密码)的替换规则固定,导致明文字母的频率特征在密文中保留(例如英语中E最常见)。攻击者只需统计字母
- 【常见分布及其特征(3)】离散型随机变量-二项分布
TomcatLikeYou
常见分布及其特征概率论
二项分布应用场景实例一面不均匀的硬币,抛出为正面的概率是0.8;连续抛出12次,问出现5次正面的概率是多少?一般的,出现0,1,2,⋯ ,120,1,2,\cdots,120,1,2,⋯,12次正面的概率分别是多少?辨析注意,对于本例,每一次抛出,单独拿出来,可以认为服从伯努利分布;此例执行了12次,注意注意,伯努利分布的样本空间为{正,反}\{正,反\}{正,反},而此例的样本空间为出现正面的次
- 2022-06-12
珍惜dxz
中原焦点团队杜小珍网络初中级28期坚持分享第375天坚持阅读第277天筑基笔记:1.埃里克森人格发展八阶段:以人格特征的标准划分年龄阶段。埃里克森话费的标准是心理社会危机,危机也是一种推动。2.埃里克森心理发展阶段与弗洛伊德的区别:埃里克森继承任性性本能和生物因素,更强调文化和社会因素。弗洛伊德心理发展分为五个阶段。埃里克森心理发展分为八个阶段。3.第一阶段:0-1.5岁发展出信任感对怀疑感,这个
- 人脸识别:AI 如何精准 “认人”?
田园Coder
人工智能科普人工智能科普
1.人脸识别的基本原理:从“看到脸”到“认出人”1.1什么是人脸识别技术人脸识别是基于人的面部特征信息进行身份认证的生物识别技术。它通过摄像头采集人脸图像,利用AI算法提取面部特征(如眼距、鼻梁高度、下颌轮廓等),再与数据库中的模板比对,最终判断“是否为同一个人”。与指纹识别、虹膜识别等生物识别技术相比,人脸识别的优势在于“非接触性”(无需触碰设备)和“自然性”(符合人类习惯,如刷脸支付无需额外操
- 心软HR的一天
浣心纱
今天终于辞退了薪酬专员,辞退人可真是件劳心劳力的活,虽然可以给她足额赔偿。可是赔偿对于老实点的员工还好,他们都会欣然接受,并心存感激。但是,那些狡猾的员工不仅不满足,而且总是想着再多要一分、再多争取一天、再串岗聊会儿天,并且还有死活不交接的……如果再把这些特征全部集中到一个人身上,就足够让HR部门费神一整天了……何止是一整天,为了她,我都几个晚上没有睡好了,一开始是纠结怎么通知她,再后来就是通知当
- Python day15
@浙大疏锦行Pythonday15.内容:复习日本周主要的内容是一些常见的机器学习流程以及其中的部分内容标签编码以及连续特征的处理:归一化和正态化等。图像的绘制:热力图、Shap图等的绘制超参数优化算法:网格搜索、贝叶斯以及启发式算法模拟退火、遗传算法等不平衡数据集的处理:过采样以及欠采样。
- 基于densenet网络创新的肺癌识别研究
深度学习乐园
深度学习人工智能densenet
获取项目源码点击文末名片摘要本项目针对肺癌CT图像识别等医学影像分析场景,基于DenseNet网络进行创新性改进,综合引入多尺度卷积、深度可分离卷积、注意力机制以及空间金字塔池化(SPP)等模块,以期提升对不同大小的肺结节及关键病理特征的识别能力。同时,通过深度可分离卷积和可选的通道剪枝等策略,将网络参数量和计算开销显著降低,为实际临床应用(如实时诊断系统)提供可行性。本项目的核心内容包括以下几个
- Python day18
赵英英俊
Python训练python
@浙大疏锦行pythonday18.内容:昨天学习了聚类算法的一些基本内容,今天继续学习相关知识分析簇的特征和相关含义(使用可视化来进行分析,也可以使用ai)代码:shap.initjs()#初始化SHAP解释器explainer=shap.TreeExplainer(model)shap_values=explainer.shap_values(x1)#这个计算耗时shap_values.sha
- 你只管努力,上天自由安排
石川河女神
我们总是习惯于羡慕别人的成就,却往往忽略了成就背后的付出。其实在这个世界上,没有任何人可以随随便便取得成功。而凡是有大成就者,他们往往都有着共同的特征——自律。所谓自律,指的是对自己的严格要求,并且坚持下去的能力。这种能力门槛很高,也很低。低到日常生活习惯的培养,高到数十年如一日不间断的坚持,需要你用一生的时间去书写。一,早起,是成功者的标配不管你早上几点上班,我发现很多次你连早餐都顾不上吃,一路
- uni-app使用web-view组件APP实现返回上一页
极客编程坊
WEB前端uni-app前端
一、功能概述本案例实现了在Uniapp中内嵌H5网页并深度控制的三项核心功能:隐藏指定特征的内链元素自定义导航栏返回逻辑Webview原生特性保留二、代码解析2.1基础结构webview-styles:控制原生Webview样式src:指定加载的H5页面地址2.2核心控制逻辑exportdefault{onReady(){constcurrentWebview=this.$scope.$getAp
- 《自动控制原理》实验报告:典型系统的时域响应和稳定性分析
戒了9
算法机器学习人工智能课程设计学习方法
实验目的及实验性质本实验的主要目的是深入研究和理解二阶系统的动态特性,以及这些特性如何影响系统的过渡过程。通过本实验,我们将能够掌握二阶系统特征参量(阻尼比ξ和自然频率ωn)对系统过渡过程的具体影响。我们将通过实验来观察和分析这些特征参量如何决定系统的响应速度、超调量以及稳定状态,从而更全面地理解二阶系统的行为。此外,我们还将探讨在不同的阻尼比条件下,二阶对象的响应曲线如何变化,并分析这些变化对系
- C#使用Quartz.NET详细讲解
diaochejiang2761
c#
C#使用Quartz.NET详细讲解Quartz.NET是一个开源的作业调度框架,是OpenSymphony的QuartzAPI的.NET移植,它用C#写成,可用于winform和asp.net应用中。它提供了巨大的灵活性而不牺牲简单性。你能够用它来为执行一个作业而创建简单的或复杂的调度。它有很多特征,如:数据库支持,集群,插件,支持cron-like表达式等等。你曾经需要应用执行一个任务吗?这个
- 金属表面划痕检测实践指南 - 使用OpenCV
IYA1738
本文还有配套的精品资源,点击获取简介:在机器视觉领域,表面划痕检测是一项关键技术,特别是在金属表面。本文深入探索了如何使用OpenCV库在VisualStudio2019环境下进行表面划痕检测。主要技术包括图像作差、动态阈值处理、边缘检测以及形态学操作。通过这些方法,我们可以有效地从金属表面图像中提取划痕特征。本文详细描述了实施表面划痕检测的步骤,包括图像读取、差分图像计算、阈值处理、边缘检测优化
- 肿瘤微环境背景下调节免疫细胞代谢的抗癌靶分子
唯问生物
肿瘤免疫疗法开启了癌症的范式治疗而备受关注。但是由于肿瘤细胞所处的独特微环境(TumorMicroenvironment,TME)会带来肿瘤细胞的代谢重编程进而限制抗肿瘤免疫力导致肿瘤的免疫逃逸。既往的研究表明影响免疫细胞功能的TME特征为:低pH,缺氧,氧化应激和代谢改变(营养竞争)。其中TME导致代谢改变主要为依赖氧化磷酸化和脂肪酸氧化来满足能量需求。此外,TME加速了效应T细胞的耗竭,导致T
- 程序员的一生:代码、挑战与无限可能
Jay_MIng
开发语言phplinux运维nginxjavapython
程序员的职业生涯呈现出鲜明的阶段性特征,每个阶段都面临不同的挑战与机遇:成长期(22-30岁):黄金学习期。在这个阶段中的你身体机能处于巅峰,自由时间也充沛,你大多是一个人,没有太多的压力,核心任务是构建技术根基。从学校的书本知识到企业级开发实战的跨越在此阶段完成,需掌握团队协作、版本控制、代码测试等工程化能力。黄金期(30-45岁):上有老下有小的负重攀登期。技术能力达到高峰,却面临家庭责任挤压
- 使用 C++ 和 OpenCV 进行表面划痕检测
whoarethenext
c++opencv开发语言划痕检测
使用C++和OpenCV进行表面划痕检测在工业自动化生产中,产品表面的质量控制至关重要。划痕作为一种常见的表面缺陷,其检测是许多领域(如金属、玻璃、塑料制造)质量保证流程中的一个关键环节。本文将介绍如何使用C++和强大的计算机视觉库OpenCV来实现一个基本的表面划痕检测算法。核心思路划痕通常在图像中表现为具有以下一个或多个特征的区域:高对比度的线性结构:划痕区域的像素强度通常会与其周围背景有明显
- Camera相机人脸识别系列专题分析之十:人脸特征检测FFD算法之低功耗libvega_face.so人脸识别检测流程详解
一起搞IT吧
数码相机算法计算机视觉深度学习图像处理android人工智能
【关注我,后续持续新增专题博文,谢谢!!!】上一篇我们讲了:Camera相机人脸识别系列专题分析之九:MTK平台FDNode三方FFD算法dump、日志开关、bypass、resize及强制不同三方FFD切换等客制化这一篇我们开始讲:Camera相机人脸识别系列专题分析之十:人脸特征检测FFD算法之低功耗libvega_face.so人脸识别检测流程详解目录一、背景二、:FFD算法libvega_
- Camera相机人脸识别系列专题分析之十五:人脸特征检测FFD算法之libcvface_api.so算法API详细注释解析
一起搞IT吧
数码相机android人工智能图像处理计算机视觉算法
【关注我,后续持续新增专题博文,谢谢!!!】上一篇我们讲了:这一篇我们开始讲:Camera相机人脸识别系列专题分析之十五:人脸特征检测FFD算法之libcvface_api.so算法API详细注释解析目录一、libcvface_api.so算法API详细注释解析<
- 深度优先搜索(DFS) vs 广度优先搜索(BFS):核心区别与应用场景
#深度优先搜索(DFS)vs广度优先搜索(BFS):核心区别与应用场景>关键词:深度优先搜索、广度优先搜索、图遍历、算法比较、应用场景>摘要:本文通过迷宫探险和消防灭火的生动比喻,揭示DFS与BFS的核心原理。结合Python代码示例和图解说明,深入解析两种算法的实现差异,并通过社交网络分析等实际案例展示它们的应用场景选择依据。##背景介绍###目的和范围本指南旨在帮助读者理解两种基础图遍历算法的
- 多模态查询优化:5个提升搜索准确率的技巧
多模态查询优化:5个提升搜索准确率的技巧关键词:多模态搜索、特征融合、跨模态对齐、混合索引、语义增强摘要:本文将揭示5个提升多模态搜索准确率的实用技巧,通过生活化案例和代码示例,带您理解如何让图像、文本、语音等不同模态数据协同工作,构建更智能的搜索引擎。背景介绍目的和范围本文旨在帮助开发者和产品经理理解多模态搜索的核心优化技术。涵盖从基础概念到实战应用的完整知识体系,重点解析5个提升准确率的关键技
- 高光谱相机(Hyperspectral Camera)
高光谱相机(HyperspectralCamera)高光谱相机:是一种可以采集连续、多达上百个窄波段的光谱信息的成像设备。它的核心特征是:每个像素点都拥有一个完整的光谱曲线,类似于“像素级别的光谱仪”。举例:普通彩色相机采集R/G/B(3个通道)多光谱相机采集~4–10个通道(如红光、绿光、红边、NIR)高光谱相机采集几十到几百个波段,每个波段宽度很窄(<10nm)高光谱vs多光谱:项目多光谱(M
- OpenCV特征点提取算法orb、surf、sift对比
点云SLAM
图形图像处理ORB算法SIFT算法人工智能计算机视觉算法
下面是OpenCV中三种常用特征点提取算法:ORB、SURF和SIFT的详细对比,从算法原理、性能、使用限制和适用场景多维度进行总结,帮助大家在实际项目中合理选择。一览表:ORBvs.SURFvs.SIFT属性/算法ORBSURFSIFT全称OrientedFASTandRotatedBRIEFSpeededUpRobustFeaturesScale-InvariantFeatureTransfo
- MATLAB 基于图像处理的杂草识别技术
鱼弦
matlab图像处理计算机视觉
MATLAB基于图像处理的杂草识别技术1.系统介绍杂草识别是精准农业中的重要环节,基于图像处理的杂草识别技术利用计算机视觉和机器学习算法,自动识别田间杂草,为精准施药提供决策支持。本系统基于MATLAB实现杂草图像处理,包括图像预处理、特征提取、分类识别等模块。2.应用场景精准农业:自动识别田间杂草,实现精准施药,减少农药使用量。生态监测:监测农田杂草种类和分布,评估生态环境。植物保护:识别有害杂
- Python 机器学习:NumPy 实现朴素贝叶斯分类器
Python编程之道
Python编程之道python机器学习numpyai
Python机器学习:NumPy实现朴素贝叶斯分类器关键词:朴素贝叶斯分类器、NumPy、机器学习、概率模型、条件概率、拉普拉斯平滑、向量化计算摘要:本文系统讲解朴素贝叶斯分类器的核心原理,基于NumPy实现高效的算法框架,涵盖从概率理论到工程实现的完整流程。通过数学公式推导、代码实现和鸢尾花数据集实战,展示如何利用向量化计算优化概率估计,解决特征独立性假设下的分类问题。同时分析算法优缺点及实际应
- 医疗AI与融合数据库的整合:挑战、架构与未来展望(下)
Allen_Lyb
数智化教程(第二期)人工智能数据库架构
解决方案:引入融合数据库(Multi-modalDataFusionDB)医院引入一款支持图、向量、表、流的融合数据库(如OracleADW、Milvus+PostgreSQL、或某国产平台),完成了以下集成:数据类型来源系统格式/模型示例内容基因组数据NGS平台VCF/JSON/图EGFR突变、ALK融合等医学影像特征CT影像AI平台向量肿瘤体积、位置、边界清晰度等临床病历HIS/EMR结构化表
- 【图像处理基石】如何入门大规模三维重建?
小米玄戒Andrew
图像处理基石深度学习人工智能三维重建大规模三维重建立体视觉大模型LLM
入门大规模三维重建需要从基础理论、核心技术到实践工具逐步深入,同时需关注该领域的经典工作和前沿进展。以下是分阶段的入门路径及值得重点学习的工作:一、基础理论与前置知识大规模三维重建的核心是从海量图像或传感器数据中恢复场景的三维结构,涉及计算机视觉、摄影测量、图形学、最优化等多个领域,需先掌握以下基础:数学基础线性代数:矩阵运算、特征值分解(用于相机姿态估计)、奇异值分解(SVD,用于基础矩阵求解)
- 元宇宙与Web3的深度融合:构建沉浸式数字体验的愿景与挑战
一、技术特征与融合基础1.元宇宙的技术架构(2025年)空间构建技术:3D建模与渲染:实时渲染引擎(如UnityHDRP)支持路径追踪光追,AI生成模型(NVIDIAGet3D)3秒生成3D场景。数字孪生:城市级建模(腾讯覆盖100+城市)、工业级精度(西门子Xcelerator达0.1mm),动态映射现实数据(如NASA火星车实时驱动虚拟环境)。交互技术:自然交互界面:手势识别(UltraLea
- AI(day08)类和对象的基本概念及属性和方法的常见分类和使用场景
旭日东升的xu.
AI(基础补习)python开发语言
类创建&对象创建**类概念:类是对一类对象的抽象,是对象的模板或蓝图。它定义了对象的属性(特征)和方法(功能)。****对象概念:对象是类的实例化,是类的实际数据存储,具有类所定义的属性和方法。**示例一:#类,抽象小汽车classCar:#创建'Car'类def__init__(self,pinpai,color,price):#初始化属性:类内部的全局变量,在类内部任何实例化对象方法里都可以使
- K近邻算法【python】【sklearn】
weixin_44985842
python近邻算法sklearn
0定义K近邻算法(K-NearestNeighbors,KNN)是一种基于实例的监督学习算法,主要用于分类和回归任务。其核心思想是:在特征空间中,对于待预测的样本,找到与其距离最近的k个已知样本(“邻居”),根据这k个邻居的类别(分类任务)或属性值(回归任务)来决定该样本的预测结果,,常用欧氏距离公式:对于两个n维样本点xi=(xi1,xi2,...,xin)x_i=(x_{i1},x_{i2},
- 应用集成体系深度解析:从数据互通到流程协同
一、应用集成核心概念框架应用集成功能互操作业务逻辑驱动异构系统协同语义互理解协议兼容1.本质定义核心内涵:多个应用系统基于业务逻辑的功能级互操作关键特征:业务逻辑驱动的功能调用(非简单数据传递)双向/多向的交互式通信实时或近实时的响应机制与传统集成区别:数据集成静态数据迁移字段映射应用集成动态功能协同服务调用二、分层支撑体系1.基础支撑层层级功能技术实现关键指标网络集成物理连通性TCP/IP,VL
- knob UI插件使用
换个号韩国红果果
JavaScriptjsonpknob
图形是用canvas绘制的
js代码
var paras = {
max:800,
min:100,
skin:'tron',//button type
thickness:.3,//button width
width:'200',//define canvas width.,canvas height
displayInput:'tr
- Android+Jquery Mobile学习系列(5)-SQLite数据库
白糖_
JQuery Mobile
目录导航
SQLite是轻量级的、嵌入式的、关系型数据库,目前已经在iPhone、Android等手机系统中使用,SQLite可移植性好,很容易使用,很小,高效而且可靠。
因为Android已经集成了SQLite,所以开发人员无需引入任何JAR包,而且Android也针对SQLite封装了专属的API,调用起来非常快捷方便。
我也是第一次接触S
- impala-2.1.2-CDH5.3.2
dayutianfei
impala
最近在整理impala编译的东西,简单记录几个要点:
根据官网的信息(https://github.com/cloudera/Impala/wiki/How-to-build-Impala):
1. 首次编译impala,推荐使用命令:
${IMPALA_HOME}/buildall.sh -skiptests -build_shared_libs -format
2.仅编译BE
${I
- 求二进制数中1的个数
周凡杨
java算法二进制
解法一:
对于一个正整数如果是偶数,该数的二进制数的最后一位是 0 ,反之若是奇数,则该数的二进制数的最后一位是 1 。因此,可以考虑利用位移、判断奇偶来实现。
public int bitCount(int x){
int count = 0;
while(x!=0){
if(x%2!=0){ /
- spring中hibernate及事务配置
g21121
Hibernate
hibernate的sessionFactory配置:
<!-- hibernate sessionFactory配置 -->
<bean id="sessionFactory"
class="org.springframework.orm.hibernate3.LocalSessionFactoryBean">
<
- log4j.properties 使用
510888780
log4j
log4j.properties 使用
一.参数意义说明
输出级别的种类
ERROR、WARN、INFO、DEBUG
ERROR 为严重错误 主要是程序的错误
WARN 为一般警告,比如session丢失
INFO 为一般要显示的信息,比如登录登出
DEBUG 为程序的调试信息
配置日志信息输出目的地
log4j.appender.appenderName = fully.qua
- Spring mvc-jfreeChart柱图(2)
布衣凌宇
jfreechart
上一篇中生成的图是静态的,这篇将按条件进行搜索,并统计成图表,左面为统计图,右面显示搜索出的结果。
第一步:导包
第二步;配置web.xml(上一篇有代码)
建BarRenderer类用于柱子颜色
import java.awt.Color;
import java.awt.Paint;
import org.jfree.chart.renderer.category.BarR
- 我的spring学习笔记14-容器扩展点之PropertyPlaceholderConfigurer
aijuans
Spring3
PropertyPlaceholderConfigurer是个bean工厂后置处理器的实现,也就是BeanFactoryPostProcessor接口的一个实现。关于BeanFactoryPostProcessor和BeanPostProcessor类似。我会在其他地方介绍。
PropertyPlaceholderConfigurer可以将上下文(配置文件)中的属性值放在另一个单独的标准java
- maven 之 cobertura 简单使用
antlove
maventestunitcoberturareport
1. 创建一个maven项目
2. 创建com.CoberturaStart.java
package com;
public class CoberturaStart {
public void helloEveryone(){
System.out.println("=================================================
- 程序的执行顺序
百合不是茶
JAVA执行顺序
刚在看java核心技术时发现对java的执行顺序不是很明白了,百度一下也没有找到适合自己的资料,所以就简单的回顾一下吧
代码如下;
经典的程序执行面试题
//关于程序执行的顺序
//例如:
//定义一个基类
public class A(){
public A(
- 设置session失效的几种方法
bijian1013
web.xmlsession失效监听器
在系统登录后,都会设置一个当前session失效的时间,以确保在用户长时间不与服务器交互,自动退出登录,销毁session。具体设置很简单,方法有三种:(1)在主页面或者公共页面中加入:session.setMaxInactiveInterval(900);参数900单位是秒,即在没有活动15分钟后,session将失效。这里要注意这个session设置的时间是根据服务器来计算的,而不是客户端。所
- java jvm常用命令工具
bijian1013
javajvm
一.概述
程序运行中经常会遇到各种问题,定位问题时通常需要综合各种信息,如系统日志、堆dump文件、线程dump文件、GC日志等。通过虚拟机监控和诊断工具可以帮忙我们快速获取、分析需要的数据,进而提高问题解决速度。 本文将介绍虚拟机常用监控和问题诊断命令工具的使用方法,主要包含以下工具:
&nbs
- 【Spring框架一】Spring常用注解之Autowired和Resource注解
bit1129
Spring常用注解
Spring自从2.0引入注解的方式取代XML配置的方式来做IOC之后,对Spring一些常用注解的含义行为一直处于比较模糊的状态,写几篇总结下Spring常用的注解。本篇包含的注解有如下几个:
Autowired
Resource
Component
Service
Controller
Transactional
根据它们的功能、目的,可以分为三组,Autow
- mysql 操作遇到safe update mode问题
bitray
update
我并不知道出现这个问题的实际原理,只是通过其他朋友的博客,文章得知的一个解决方案,目前先记录一个解决方法,未来要是真了解以后,还会继续补全.
在mysql5中有一个safe update mode,这个模式让sql操作更加安全,据说要求有where条件,防止全表更新操作.如果必须要进行全表操作,我们可以执行
SET
- nginx_perl试用
ronin47
nginx_perl试用
因为空闲时间比较多,所以在CPAN上乱翻,看到了nginx_perl这个项目(原名Nginx::Engine),现在托管在github.com上。地址见:https://github.com/zzzcpan/nginx-perl
这个模块的目的,是在nginx内置官方perl模块的基础上,实现一系列异步非阻塞的api。用connector/writer/reader完成类似proxy的功能(这里
- java-63-在字符串中删除特定的字符
bylijinnan
java
public class DeleteSpecificChars {
/**
* Q 63 在字符串中删除特定的字符
* 输入两个字符串,从第一字符串中删除第二个字符串中所有的字符。
* 例如,输入”They are students.”和”aeiou”,则删除之后的第一个字符串变成”Thy r stdnts.”
*/
public static voi
- EffectiveJava--创建和销毁对象
ccii
创建和销毁对象
本章内容:
1. 考虑用静态工厂方法代替构造器
2. 遇到多个构造器参数时要考虑用构建器(Builder模式)
3. 用私有构造器或者枚举类型强化Singleton属性
4. 通过私有构造器强化不可实例化的能力
5. 避免创建不必要的对象
6. 消除过期的对象引用
7. 避免使用终结方法
1. 考虑用静态工厂方法代替构造器
类可以通过
- [宇宙时代]四边形理论与光速飞行
comsci
从四边形理论来推论 为什么光子飞船必须获得星光信号才能够进行光速飞行?
一组星体组成星座 向空间辐射一组由复杂星光信号组成的辐射频带,按照四边形-频率假说 一组频率就代表一个时空的入口
那么这种由星光信号组成的辐射频带就代表由这些星体所控制的时空通道,该时空通道在三维空间的投影是一
- ubuntu server下python脚本迁移数据
cywhoyi
pythonKettlepymysqlcx_Oracleubuntu server
因为是在Ubuntu下,所以安装python、pip、pymysql等都极其方便,sudo apt-get install pymysql,
但是在安装cx_Oracle(连接oracle的模块)出现许多问题,查阅相关资料,发现这边文章能够帮我解决,希望大家少走点弯路。http://www.tbdazhe.com/archives/602
1.安装python
2.安装pip、pymysql
- Ajax正确但是请求不到值解决方案
dashuaifu
Ajaxasync
Ajax正确但是请求不到值解决方案
解决方案:1 . async: false , 2. 设置延时执行js里的ajax或者延时后台java方法!!!!!!!
例如:
$.ajax({ &
- windows安装配置php+memcached
dcj3sjt126com
PHPInstallmemcache
Windows下Memcached的安装配置方法
1、将第一个包解压放某个盘下面,比如在c:\memcached。
2、在终端(也即cmd命令界面)下输入 'c:\memcached\memcached.exe -d install' 安装。
3、再输入: 'c:\memcached\memcached.exe -d start' 启动。(需要注意的: 以后memcached将作为windo
- iOS开发学习路径的一些建议
dcj3sjt126com
ios
iOS论坛里有朋友要求回答帖子,帖子的标题是: 想学IOS开发高阶一点的东西,从何开始,然后我吧啦吧啦回答写了很多。既然敲了那么多字,我就把我写的回复也贴到博客里来分享,希望能对大家有帮助。欢迎大家也到帖子里讨论和分享,地址:http://bbs.csdn.net/topics/390920759
下面是我回复的内容:
结合自己情况聊下iOS学习建议,
- Javascript闭包概念
fanfanlovey
JavaScript闭包
1.参考资料
http://www.jb51.net/article/24101.htm
http://blog.csdn.net/yn49782026/article/details/8549462
2.内容概述
要理解闭包,首先需要理解变量作用域问题
内部函数可以饮用外面全局变量
var n=999;
functio
- yum安装mysql5.6
haisheng
mysql
1、安装http://dev.mysql.com/get/mysql-community-release-el7-5.noarch.rpm
2、yum install mysql
3、yum install mysql-server
4、vi /etc/my.cnf 添加character_set_server=utf8
- po/bo/vo/dao/pojo的详介
IT_zhlp80
javaBOVODAOPOJOpo
JAVA几种对象的解释
PO:persistant object持久对象,可以看成是与数据库中的表相映射的java对象。最简单的PO就是对应数据库中某个表中的一条记录,多个记录可以用PO的集合。PO中应该不包含任何对数据库的操作.
VO:value object值对象。通常用于业务层之间的数据传递,和PO一样也是仅仅包含数据而已。但应是抽象出的业务对象,可
- java设计模式
kerryg
java设计模式
设计模式的分类:
一、 设计模式总体分为三大类:
1、创建型模式(5种):工厂方法模式,抽象工厂模式,单例模式,建造者模式,原型模式。
2、结构型模式(7种):适配器模式,装饰器模式,代理模式,外观模式,桥接模式,组合模式,享元模式。
3、行为型模式(11种):策略模式,模版方法模式,观察者模式,迭代子模式,责任链模式,命令模式,备忘录模式,状态模式,访问者
- [1]CXF3.1整合Spring开发webservice——helloworld篇
木头.java
springwebserviceCXF
Spring 版本3.2.10
CXF 版本3.1.1
项目采用MAVEN组织依赖jar
我这里是有parent的pom,为了简洁明了,我直接把所有的依赖都列一起了,所以都没version,反正上面已经写了版本
<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="ht
- Google 工程师亲授:菜鸟开发者一定要投资的十大目标
qindongliang1922
工作感悟人生
身为软件开发者,有什么是一定得投资的? Google 软件工程师 Emanuel Saringan 整理了十项他认为必要的投资,第一项就是身体健康,英文与数学也都是必备能力吗?来看看他怎么说。(以下文字以作者第一人称撰写)) 你的健康 无疑地,软件开发者是世界上最久坐不动的职业之一。 每天连坐八到十六小时,休息时间只有一点点,绝对会让你的鲔鱼肚肆无忌惮的生长。肥胖容易扩大罹患其他疾病的风险,
- linux打开最大文件数量1,048,576
tianzhihehe
clinux
File descriptors are represented by the C int type. Not using a special type is often considered odd, but is, historically, the Unix way. Each Linux process has a maximum number of files th
- java语言中PO、VO、DAO、BO、POJO几种对象的解释
衞酆夼
javaVOBOPOJOpo
PO:persistant object持久对象
最形象的理解就是一个PO就是数据库中的一条记录。好处是可以把一条记录作为一个对象处理,可以方便的转为其它对象。可以看成是与数据库中的表相映射的java对象。最简单的PO就是对应数据库中某个表中的一条记录,多个记录可以用PO的集合。PO中应该不包含任何对数据库的操作。
BO:business object业务对象
封装业务逻辑的java对象