P2P中DHT网络介绍

来源虾库网:xiaqo.com

一、P2P及DHT网络简单介绍:

P2P在思想上可以说是internet思想/精神/哲学非常集中的体现,共同的参与,透明的开放,平等的分享(让我想起之前学习过的,现在正在疯狂热炒的云计算的“中央集权”制度)。基于P2P技术的应用有很多,包括文件分享,即时通信,协同处理,流媒体通信等等。通过这些应用的接触,分析和理解,P2P其本质是一种新的网络传播技术,这种新的传播技术打破了传统的C/S架构,逐步地去中心化,扁平化,这或许在一定程度上应证了”世界是平的”趋势,呵呵。P2P文件分享的应用(BTs/eMules等)是P2P技术最集中的体现,我们这里的研究也是以P2P文件分享网络作为入口,P2P文件分享网络的发展大致有以下几个阶段,包含tracker服务器的网络,无任何服务器的纯DHT网络, 混合型P2P网络。DHT网络发展即有“思想/文化”上的“发展”,也有一定的商业上的需求(版权管理)。

DHT全称叫分布式哈希表(Distributed Hash Table),是一种分布式存储方法,一类可由键值来唯一标示的信息按照某种约定/协议被分散地存储在多个节点上,这样也可以有效地避免“中央集权式”的服务器(比如:tracker)的单一故障而带来的整个网络瘫痪。实现DHT的技术/算法有很多种,常用的有:Chord, Pastry, Kademlia等。我们这里要研究的是Kademlia算法,因为BT及BT的衍生派(Mainline, Btspilits, Btcomet, uTorrent…),eMule及eMule各类Mods(verycd, easy emules, xtreme…)等P2P文件分享软件都是基于该算法来实现DHT网络的,BT采用Python的Kademlia实现叫作khashmir(科什米尔,印巴冲突地带?),有如下官网。eMule采用C++的Kademlia实现干脆就叫作Kad,当然它们之间有些差别,但基础都是Kademlia。我们这里以BT-DHT为例进行分析介绍,下面说到的DHT都可以默认是BT-Kademlia-DHT。

官方网站:http://www.tribler.org/trac/wiki/Khashmir

二、Kademlia实现原理

各种DHT的实现算法,不论是Chord, Pastry还是Kademlia,其最直接的目标就是以最快的速度来定位到期望的节点,在P2P文件分享应用中则是以最快的速度来查找到正在分享某一文件/种子的peers列表信息。因为每个节点都是分布式存在于地球的任何角落,如果用地理距离来衡量两节点间的距离则可能给计算带来极大复杂性甚至不可能进行衡量,因此基本所有的DHT算法都是采用某种逻辑上的距离,在Kademlia则采用简单的异或计算来衡量两节点间的距离,它和地理上的距离没有任何关系,但却具备几何公式的绝大特征:

(1)节点和它本身之间的异或距离是0

(2)异或距离是对称的:即从A到B的异或距离与从B到A的异或距离是等同的

(3)异或距离符合三角形不等式:给定三个顶点A B C,假如AC之间的异或距离最大,那么AC之间的异或距离必小于或等于AB异或距离和BC异或距离之和.

(4)对于给定的一个距离,距离A只存在有唯一的一个节点B,也即单向性,在查找路径上也是单向的,这个和地理距离不同。

Kademlia中规定所有的节点都具有一个节点ID,该节点ID的产生方法和种子文件中的info hash采用相同算法:即sha-1(安全hash算法),因此每个节点的id,以及每个共享文件/种子的info-hash都是唯一的,并且都是20个字符160bits位组成。两个节点间的距离就是两个节点id的异或结果,节点离键值(种子)的距离为该节点的id和该种子文件的info-hash的异或结果。Kademlia在异或距离度量的基础上又把整个DHT网络拓扑组织成一个二叉前缀树(XuanWu系统中arp的实现则是一个例子),所有的节点(所有的正在运行的,并且开取了DHT功能的Bt,Btspilits应用)等作为该二叉前缀树的叶子节点,可以想象这棵二叉树可以容纳多达2128个叶子(节点),这足以组织任何规模的网络了。对于每个节点来说按照离自己的远近区域又可以把这棵树划分为160棵子树,每一个子树和该节点都有一个共同的前缀,共同前缀越少离得越远。如下图所示:

P2P中DHT网络介绍_第1张图片

(注意:上图只是一个划分子树的例子,节点都没有位于同一层的叶子上面)

以上图红色节点位例0011位例,它可以把其他的节点划分位4棵不同子树,离自己越近子树和自己有越长的公共前缀,如果节点是均匀分布则离自己越近的子树含有的叶子节点更少(

你可能感兴趣的:(网络,p2p,网络协议)