数据结构与算法之美学习笔记:31 | 深度和广度优先搜索:如何找出社交网络中的三度好友关系?

目录

  • 前言
  • 什么是“搜索”算法?
  • 广度优先搜索(BFS)
  • 深度优先搜索(DFS)
  • 解答开篇
  • 内容小结

前言

数据结构与算法之美学习笔记:31 | 深度和广度优先搜索:如何找出社交网络中的三度好友关系?_第1张图片
本节课程思维导图:
数据结构与算法之美学习笔记:31 | 深度和广度优先搜索:如何找出社交网络中的三度好友关系?_第2张图片
社交网络中,有一个六度分割理论,具体是说,你与世界上的另一个人间隔的关系不会超过六度,也就是说平均只需要六步就可以联系到任何两个互不相识的人。
一个用户的一度连接用户很好理解,就是他的好友,二度连接用户就是他好友的好友,三度连接用户就是他好友的好友的好友。在社交网络中,我们往往通过用户之间的连接关系,来实现推荐“可能认识的人”这么一个功能。今天的开篇问题就是,给你一个用户,如何找出这个用户的所有三度(其中包含一度、二度和三度)好友关系?

什么是“搜索”算法?

算法是作用于具体数据结构之上的,深度优先搜索算法和广度优先搜索算法都是基于“图”这种数据结构的。这是因为,图这种数据结构的表达能力很强,大部分涉及搜索的场景都可以抽象成“图”。

图上的搜索算法,最直接的理解就是,在图中找出从一个顶点出发,到另一个顶点的路径。具体方法有很多,比如今天要讲的两种最简单、最“暴力”的深度优先、广度优先搜索。

图有两种主要存储方法,邻接表和邻接矩阵。今天我会用邻接表来存储图。需要说明一下,深度优先搜索算法和广度优先搜索算法,既可以用在无向图,也可以用在有向图上。在今天的讲解中,我都针对无向图来讲解。

public class Graph { // 无向图
  private int v; // 顶点的个数
  private LinkedList<Integer> adj[]; // 邻接表

  public Graph(int v) {
    this.v = v;
    adj = new LinkedList[v];
    for (int i=0; i<v; ++i) {
      adj[i] = new LinkedList<>();
    }
  }

  public void addEdge(int s, int t) { // 无向图一条边存两次
    adj[s].add(t);
    adj[t].add(s);
  }
}

广度优先搜索(BFS)

广度优先搜索(Breadth-First-Search),我们平常都简称 BFS。直观地讲,它其实就是一种“地毯式”层层推进的搜索策略,即先查找离起始顶点最近的,然后是次近的,依次往外搜索。
数据结构与算法之美学习笔记:31 | 深度和广度优先搜索:如何找出社交网络中的三度好友关系?_第3张图片
bfs() 函数就是基于之前定义的,图的广度优先搜索的代码实现。其中 s 表示起始顶点,t 表示终止顶点。我们搜索一条从 s 到 t 的路径。实际上,这样求得的路径就是从 s 到 t 的最短路径。

public void bfs(int s, int t) {
  if (s == t) return;
  boolean[] visited = new boolean[v];
  visited[s]=true;
  Queue<Integer> queue = new LinkedList<>();
  queue.add(s);
  int[] prev = new int[v];
  for (int i = 0; i < v; ++i) {
    prev[i] = -1;
  }
  while (queue.size() != 0) {
    int w = queue.poll();
   for (int i = 0; i < adj[w].size(); ++i) {
      int q = adj[w].get(i);
      if (!visited[q]) {
        prev[q] = w;
        if (q == t) {
          print(prev, s, t);
          return;
        }
        visited[q] = true;
        queue.add(q);
      }
    }
  }
}

private void print(int[] prev, int s, int t) { // 递归打印s->t的路径
  if (prev[t] != -1 && t != s) {
    print(prev, s, prev[t]);
  }
  System.out.print(t + " ");
}

这段代码里面有三个重要的辅助变量 visited、queue、prev;
visited 是用来记录已经被访问的顶点,用来避免顶点被重复访问。如果顶点 q 被访问,那相应的 visited[q]会被设置为 true。

queue 是一个队列,用来存储已经被访问、但相连的顶点还没有被访问的顶点。因为广度优先搜索是逐层访问的,也就是说,我们只有把第 k 层的顶点都访问完成之后,才能访问第 k+1 层的顶点。当我们访问到第 k 层的顶点的时候,我们需要把第 k 层的顶点记录下来,稍后才能通过第 k 层的顶点来找第 k+1 层的顶点。所以,我们用这个队列来实现记录的功能。

prev 用来记录搜索路径。当我们从顶点 s 开始,广度优先搜索到顶点 t 后,prev 数组中存储的就是搜索的路径。不过,这个路径是反向存储的。prev[w]存储的是,顶点 w 是从哪个前驱顶点遍历过来的。比如,我们通过顶点 2 的邻接表访问到顶点 3,那 prev[3]就等于 2。为了正向打印出路径,我们需要递归地来打印,你可以看下 print() 函数的实现方式。
数据结构与算法之美学习笔记:31 | 深度和广度优先搜索:如何找出社交网络中的三度好友关系?_第4张图片
我们来看下,广度优先搜索的时间、空间复杂度是多少呢?
最坏情况下,终止顶点 t 离起始顶点 s 很远,需要遍历完整个图才能找到。这个时候,每个顶点都要进出一遍队列,每个边也都会被访问一次,所以,广度优先搜索的时间复杂度是 O(V+E),其中,V 表示顶点的个数,E 表示边的个数。当然,对于一个连通图来说,也就是说一个图中的所有顶点都是连通的,E 肯定要大于等于 V-1,所以,广度优先搜索的时间复杂度也可以简写为 O(E)。

广度优先搜索的空间消耗主要在几个辅助变量 visited 数组、queue 队列、prev 数组上。这三个存储空间的大小都不会超过顶点的个数,所以空间复杂度是 O(V)。

深度优先搜索(DFS)

深度优先搜索(Depth-First-Search),简称 DFS。最直观的例子就是“走迷宫”。

假设你站在迷宫的某个岔路口,然后想找到出口。你随意选择一个岔路口来走,走着走着发现走不通的时候,你就回退到上一个岔路口,重新选择一条路继续走,直到最终找到出口。这种走法就是一种深度优先搜索策略。

我们现在再来看下,如何在图中应用深度优先搜索,来找某个顶点到另一个顶点的路径。搜索的起始顶点是 s,终止顶点是 t,我们希望在图中寻找一条从顶点 s 到顶点 t 的路径。如果映射到迷宫那个例子,s 就是你起始所在的位置,t 就是出口。

我用深度递归算法,把整个搜索的路径标记出来了。这里面实线箭头表示遍历,虚线箭头表示回退。从图中我们可以看出,深度优先搜索找出来的路径,并不一定是顶点 s 到顶点 t 的最短路径。

数据结构与算法之美学习笔记:31 | 深度和广度优先搜索:如何找出社交网络中的三度好友关系?_第5张图片
深度优先搜索用的是一种比较著名的算法思想,回溯思想。这种思想解决问题的过程,非常适合用递归来实现。

boolean found = false; // 全局变量或者类成员变量

public void dfs(int s, int t) {
  found = false;
  boolean[] visited = new boolean[v];
  int[] prev = new int[v];
  for (int i = 0; i < v; ++i) {
    prev[i] = -1;
  }
  recurDfs(s, t, visited, prev);
  print(prev, s, t);
}

private void recurDfs(int w, int t, boolean[] visited, int[] prev) {
  if (found == true) return;
  visited[w] = true;
  if (w == t) {
    found = true;
    return;
  }
  for (int i = 0; i < adj[w].size(); ++i) {
    int q = adj[w].get(i);
    if (!visited[q]) {
      prev[q] = w;
      recurDfs(q, t, visited, prev);
    }
  }
}

我们发现,深度优先搜索代码实现也用到了 prev、visited 变量以及 print() 函数,它们跟广度优先搜索代码实现里的作用是一样的。不过,深度优先搜索代码实现里,有个比较特殊的变量 found,它的作用是,当我们已经找到终止顶点 t 之后,我们就不再递归地继续查找了。

我们来看,深度优先搜索的时间、空间复杂度是多少呢?
从我前面画的图可以看出,每条边最多会被访问两次,一次是遍历,一次是回退。所以,图上的深度优先搜索算法的时间复杂度是 O(E),E 表示边的个数。
深度优先搜索算法的消耗内存主要是 visited、prev 数组和递归调用栈。visited、prev 数组的大小跟顶点的个数 V 成正比,递归调用栈的最大深度不会超过顶点的个数,所以总的空间复杂度就是 O(V)。

解答开篇

我们现在来一起看下,如何找出社交网络中某个用户的三度好友关系?
社交网络可以用图来表示。这个问题就非常适合用图的广度优先搜索算法来解决,因为广度优先搜索是层层往外推进的。首先,遍历与起始顶点最近的一层顶点,也就是用户的一度好友,然后再遍历与用户距离的边数为 2 的顶点,也就是二度好友关系,以及与用户距离的边数为 3 的顶点,也就是三度好友关系。
我们只需要稍加改造一下广度优先搜索代码,用一个数组来记录每个顶点与起始顶点的距离,非常容易就可以找出三度好友关系。

内容小结

广度优先搜索和深度优先搜索是图上的两种最常用、最基本的搜索算法,比起其他高级的搜索算法,比如 A*、IDA* 等,要简单粗暴,没有什么优化,所以,也被叫作暴力搜索算法。所以,这两种搜索算法仅适用于状态空间不大,也就是说图不大的搜索。

广度优先搜索,通俗的理解就是,地毯式层层推进,从起始顶点开始,依次往外遍历。广度优先搜索需要借助队列来实现,遍历得到的路径就是,起始顶点到终止顶点的最短路径。深度优先搜索用的是回溯思想,非常适合用递归实现。换种说法,深度优先搜索是借助栈来实现的。在执行效率方面,深度优先和广度优先搜索的时间复杂度都是 O(E),空间复杂度是 O(V)。

你可能感兴趣的:(数据结构与算法之美学习笔记,数据结构,算法)