- 图神经网络实战(2)——图论基础
盼小辉丶
图神经网络从入门到项目实战神经网络图论图神经网络GNN
图神经网络实战(2)——图论基础0.前言1.图属性1.1有向图和无向图1.2加权图和非加权图1.3连通图和非连通图1.4其它图类型2.图概念2.1基本对象2.2图的度量指标2.2邻接矩阵表示法3.图算法3.1广度优先搜索3.2深度优先搜索小结系列链接0.前言图论(Graphtheory)是数学的一个基本分支,涉及对图研究。图是复杂数据结构的可视化表示,有助于理解不同实体之间的关系。图论提供了大量建
- 使用支持向量机(SVM)进行股票市场预测
m0_57781768
支持向量机算法机器学习
使用支持向量机(SVM)进行股票市场预测引言股票市场预测是金融领域的一个热门话题,也是一个充满挑战的研究领域。通过准确的市场预测,投资者可以做出更明智的决策,从而获得更高的回报。支持向量机(SVM)作为一种强大的机器学习算法,已被广泛应用于各种分类和回归问题。本文将详细介绍如何使用C++和支持向量机进行股票市场预测,并提供完整的代码示例。支持向量机简介支持向量机(SVM)是一种监督学习算法,最初用
- DeepSeek:开启智能搜索与AI发展的新纪元
gs80140
AI人工智能
在人工智能领域,DeepSeek正以其卓越的技术创新和强大的性能表现,成为全球瞩目的焦点。作为一款基于深度学习技术的智能搜索引擎和AI模型,DeepSeek不仅在技术上取得了重大突破,还在多个应用场景中展现了巨大的应用潜力,为用户带来了前所未有的智能体验。一、DeepSeek简介DeepSeek由杭州深度求索人工智能基础技术研究有限公司推出,是一款集自然语言处理(NLP)、计算机视觉(CV)、强化
- 【Java】已解决java.lang.ClassNotFoundException异常
屿小夏
java开发语言
个人简介:某不知名博主,致力于全栈领域的优质博客分享|用最优质的内容带来最舒适的阅读体验!文末获取免费IT学习资料!文末获取更多信息精彩专栏推荐订阅收藏专栏系列直达链接相关介绍书籍分享点我跳转书籍作为获取知识的重要途径,对于IT从业者来说更是不可或缺的资源。不定期更新IT图书,并在评论区抽取随机粉丝,书籍免费包邮到家AI前沿点我跳转探讨人工智能技术领域的最新发展和创新,涵盖机器学习、深度学习、自然
- Megatron:深度学习中的高性能模型架构
gs80140
基础知识科谱AI机器学习人工智能
Megatron:深度学习中的高性能模型架构Megatron是由NVIDIA推出的深度学习大规模预训练模型框架,主要针对大规模Transformer架构模型的高效训练与推理。Megatron大多用于GPT(生成式预训练模型)、BERT等Transformer模型的预训练,擅长在大规模数据集和高性能计算资源上进行训练。Megatron的主要特点1.超大模型的高效训练模型并行(ModelParalle
- AIGC的底层框架和技术模块
五岔路口
AIGC
AIGC(ArtificialIntelligenceGeneratedContent,人工智能生成内容)的底层框架和技术模块是构建其强大自然语言处理能力的核心组成部分。以下是对AIGC底层框架和技术模块的详细解析:底层框架AIGC的底层框架主要基于深度学习的语言模型,特别是Transformer模型及其变种,如GPT(GenerativePre-trainedTransformer)等。这些模型
- Python机器学习实战:人脸识别技术的实现和挑战
AI天才研究院
AI大模型企业级应用开发实战大数据AI人工智能计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
Python机器学习实战:人脸识别技术的实现和挑战作者:禅与计算机程序设计艺术/ZenandtheArtofComputerProgramming关键词:人脸识别技术,模型训练,多人识别,动态人脸检测,应用场景1.背景介绍1.1问题的由来随着科技的进步和互联网的普及,人脸识别技术因其在安全验证、生物特征识别、智能监控等多个领域的广泛应用而迅速崛起。从传统的门禁系统到现代的人脸支付、社交媒体的自动登
- 深度学习:基础原理与实践
阿尔法星球
深度学习python人工智能
1.深度学习概述1.1定义与发展历程深度学习是机器学习的一个分支,它基于人工神经网络的学习算法,特别是那些具有多层(深层)结构的网络。深度学习模型能够自动从原始数据中提取复杂的特征,而不需要人为设计特征提取算法。定义:深度学习可以定义为使用深层神经网络进行学习的过程,这些网络由多个非线性的变换组成,能够学习数据的多层次表示。发展历程:深度学习的起源可以追溯到1943年WarrenSturgisMc
- 探索神经网络的奥秘:从基础理论到Python实践
仲毓俏Alanna
探索神经网络的奥秘:从基础理论到Python实践【下载地址】第一章神经网络如何工作附Python神经网络编程.pdf分享本资源文件提供了关于神经网络基础知识的详细介绍,并附带了一个Python神经网络编程的PDF文件。通过学习本资源,您将能够理解神经网络的基本工作原理,并掌握如何使用Python进行神经网络编程项目地址:https://gitcode.com/Resource-Bundle-Col
- 什么是MoE?
CM莫问
深度学习人工智能算法常见概念人工智能算法python深度学习MoE混合专家模型机器学习
一、概念MoE(MixtureofExperts)是一种深度学习架构,它结合了多个专家模型(Experts)和一个门控机制(GatingMechanism)来处理不同的输入数据或任务。MoE的核心思想是将复杂的任务分解为多个子任务,由不同的专家网络来处理,以此来提升整体模型的性能和效率。MOE通过集成多个专家来显著提高模型的容量和表达能力,每个专家可以专注于学习输入数据的不同方面或特征,使得整个模
- 【 书生·浦语大模型实战营】学习笔记(三):“茴香豆” 搭建你的RAG 智能助理
GoAI
自然语言处理NLP深入浅出AI深入浅出LLM深度学习LLM人工智能大模型
AI学习星球推荐:GoAI的学习社区知识星球是一个致力于提供《机器学习|深度学习|CV|NLP|大模型|多模态|AIGC》各个最新AI方向综述、论文等成体系的学习资料,配有全面而有深度的专栏内容,包括不限于前沿论文解读、资料共享、行业最新动态以、实践教程、求职相关(简历撰写技巧、面经资料与心得)多方面综合学习平台,强烈推荐AI小白及AI爱好者学习,性价比非常高!加入星球➡️点击链接【书生·
- 计算机视觉领域的轻量化模型——GhostNet 模型
DuHz
边缘计算轻量化模型计算机视觉人工智能算法深度学习神经网络边缘计算网络
GhostNet模型详解GhostNet是一个高效的轻量化卷积神经网络模型,专为资源受限的设备(如移动设备和嵌入式系统)设计。它的核心创新是Ghost模块,该模块通过生成更多的特征图来减少计算资源消耗。GhostNet适用于实时计算任务,如图像分类和物体检测,同时在保持较高准确率的基础上,优化了计算效率。目录GhostNet背景Ghost模块概述GhostNet网络架构Ghost模块的数学原理Gh
- 课程内容摘要生成:基于知识蒸馏与事实增强的深度学习模型实践
二进制独立开发
非纯粹GenAIGenAI与Python深度学习人工智能自然语言处理python语言模型神经网络生成对抗网络
文章目录引言一、核心技术:知识蒸馏与事实三元组融合二、模型架构设计与优化三、Python实现与关键代码解析四、业务价值与效果分析五、挑战与优化方向引言在教育内容数字化进程中,课程内容摘要生成技术能够从海量教学资源中提炼核心知识点,解决人工编写效率低、知识更新滞后的问题。当前主流方法依赖于深度学习模型,但存在事实性偏差、可解释性不足等缺陷。本文提出一种融合知识蒸馏与事实三元组增强的摘要生成框架,结合
- 详解大模型微调数据集构建方法(持续更新)
herosunly
大模型微调数据集构建方法
大家好,我是herosunly。985院校硕士毕业,现担任算法t研究员一职,热衷于机器学习算法研究与应用。曾获得阿里云天池比赛第一名,CCF比赛第二名,科大讯飞比赛第三名。拥有多项发明专利。对机器学习和深度学习拥有自己独到的见解。曾经辅导过若干个非计算机专业的学生进入到算法行业就业。希望和大家一起成长进步。 本文详细介绍了大模型微调数据集构建方法,希望能对学习大模型的同学们有所帮助。文章目录
- 基于深度学习的基于视觉的机器人导航
SEU-WYL
深度学习dnn深度学习机器人人工智能
基于深度学习的视觉机器人导航是一种通过深度学习算法结合视觉感知系统(如摄像头、LiDAR等)实现机器人在复杂环境中的自主导航的技术。这种方法使机器人能够像人类一样使用视觉信息感知环境、规划路径,并避开障碍物。与传统的导航方法相比,深度学习模型能够在动态环境中表现出更强的适应能力和鲁棒性。1.视觉导航的基本概念视觉导航是指通过处理机器人的摄像头等视觉传感器采集到的图像数据,构建环境模型,进而进行路径
- 【深度学习】softmax回归的简洁实现
熙曦Sakura
深度学习深度学习回归人工智能
softmax回归的简洁实现我们发现(通过深度学习框架的高级API能够使实现)(softmax)线性(回归变得更加容易)。同样,通过深度学习框架的高级API也能更方便地实现softmax回归模型。本节继续使用Fashion-MNIST数据集,并保持批量大小为256。importtorchfromtorchimportnnfromd2limporttorchasd2l初始化模型参数[softmax回
- 深度学习查漏补缺:1.梯度消失、梯度爆炸和残差块
nnerddboy
白话机器学习深度学习人工智能
一、梯度消失梯度消失的根本原因在于激活函数的性质和链式法则的计算:激活函数的导数很小:常见的激活函数(例如Sigmoid和Tanh)在输入较大或较小时,输出趋于饱和(Sigmoid的输出趋于0或1),其导数接近于0。在反向传播中,每一层的梯度都会乘以激活函数的导数。如果导数很小,乘积就会导致梯度逐渐变小。链式法则的多次相乘:假设网络有nn层,梯度从输出层传到第ii层时,会经历多次链式相乘:如果每一
- 从System Prompt来看Claude3、Kimi和ChatGLM4之间的差距
herosunly
大模型systempromptgpt4claudekimiChatGLM4
大家好,我是herosunly。985院校硕士毕业,现担任算法t研究员一职,热衷于机器学习算法研究与应用。曾获得阿里云天池比赛第一名,CCF比赛第二名,科大讯飞比赛第三名。拥有多项发明专利。对机器学习和深度学习拥有自己独到的见解。曾经辅导过若干个非计算机专业的学生进入到算法行业就业。希望和大家一起成长进步。 本文主要介绍了从SystemPrompt来看Claude3、Kimi和ChatGLM
- 基于face_recognition的人脸识别
#北极星star
人脸识别人工智能opencv计算机视觉
目录一.简要介绍二.相关函数三.算法流程四.代码实现五.效果展示一.简要介绍face_recognition是一个基于Python的开源人脸识别库,它使用dlib库中的深度学习模型来实现人脸识别功能。这个库以其简洁的API和高效的性能而广受欢迎,成为许多开发者和研究者的首选工具。face_recognition库的主要功能包括:1.人脸检测:识别图像中所有的人脸并返回其位置信息。2.人脸编码:将检
- solr 的admin.html 详细使用讲解
qq_37300675
solr
爱雨轩真正的爱情,就像花朵,开放的地方越贫瘠,越是美丽动人!目录视图摘要视图订阅征文|从高考,到程序员深度学习与TensorFlow入门一课搞定!每周荐书|Web扫描、HTML5、Python(评论送书)solr管理界面详解标签:solrsolr管理界面solrqueryanalysis2016-08-0210:425117人阅读评论(0)收藏举报本文章已收录于:分类:Solr(8)作者同类文章X
- Python从0到100(八十一):神经网络-Fashion MNIST数据集取得最高的识别准确率
是Dream呀
python神经网络开发语言
前言:零基础学Python:Python从0到100最新最全教程。想做这件事情很久了,这次我更新了自己所写过的所有博客,汇集成了Python从0到100,共一百节课,帮助大家一个月时间里从零基础到学习Python基础语法、Python爬虫、Web开发、计算机视觉、机器学习、神经网络以及人工智能相关知识,成为学习学习和学业的先行者!欢迎大家订阅专栏:零基础学Python:Python从0到100最新
- 深度学习-笔记2
深度学习神经网络
paddlepaddle安装(使用cpu):dockerpullregistry.baidubce.com/paddlepaddle/paddle:2.6.2查看下paddlepaddle的镜像层次和安装目录结构(没有看到dockerbuild文件,先感受一下目录结构吧):dockerinspectregistry.baidubce.com/paddlepaddle/paddle:2.6.2|gr
- 多模态大模型:技术原理与实战 工具和算法框架介绍
AI大模型应用之禅
AI大模型与大数据计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
1.背景介绍1.1从单模态到多模态的必然趋势传统的深度学习模型大多是单模态的,例如只处理图像数据的卷积神经网络(CNN)或只处理文本数据的循环神经网络(RNN)。然而,现实世界的信息往往是多模态的,例如一张图片可以包含物体、场景、文字等多种信息,一段视频则包含图像、声音、字幕等多种模态的数据。为了更好地理解和处理现实世界的信息,多模态学习应运而生。近年来,随着深度学习技术的快速发展,多模态学习取得
- 从零开始大模型开发与微调:汉字拼音数据集处理
AGI大模型与大数据研究院
大数据AI人工智能计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
从零开始大模型开发与微调:汉字拼音数据集处理1.背景介绍1.1问题的由来在人工智能领域,自然语言处理(NLP)是一项基础且重要的研究方向。随着深度学习技术的飞速发展,大规模语言模型(LargeLanguageModel,LLM)在NLP领域取得了显著的成果。然而,LLM的训练与微调过程往往需要海量的文本数据,而这些数据通常以自然语言形式存在,难以直接用于模型训练。因此,如何从自然语言数据中提取结构
- 深度学习专业毕业设计选题清单:算法与应用
HaiLang_IT
毕业设计选题毕业设计人工智能深度学习
目录前言毕设选题开题指导建议更多精选选题选题帮助最后前言大家好,这里是海浪学长毕设专题!大四是整个大学期间最忙碌的时光,一边要忙着准备考研、考公、考教资或者实习为毕业后面临的升学就业做准备,一边要为毕业设计耗费大量精力。学长给大家整理了计算机专业最新精选选题,如遇选题困难或选题有任何疑问,都可以问学长哦(见文末)!对毕设有任何疑问都可以问学长哦!更多选题指导:最新最全计算机专业毕设选题精选推荐汇总
- python cv2 matchtemplate_机器学习进阶-图像金字塔与轮廓检测-模板匹配(单目标匹配和多目标匹配)1.cv2.matchTemplate(进行模板匹配) 2.cv2.minMa...
weixin_39621044
pythoncv2matchtemplate
1.cv2.matchTemplate(src,template,method)#用于进行模板匹配参数说明:src目标图像,template模板,method使用什么指标做模板的匹配度指标2.min_val,max_val,min_loc,max_loc=cv2.minMaxLoc(ret)#找出矩阵中最大值和最小值,即其对应的(x,y)的位置参数说明:min_val,max_val,min_lo
- 机器学习进阶-图像金字塔与轮廓检测-图像金字塔(拉普拉斯金字塔)
weixin_33908217
人工智能python
拉普拉斯金字塔:使用原始图片-pyrUp(pyrDown(Gi)),获得的结果有一点像边缘轮廓的提取上图的意思:1.进行低通滤波2.进行样本的下采样3.进行样本的上采样4.原始图片-经过上面三步后的图片代码:第一步:读入图片第二步:进行样本的下采样第三步:进行样本的上采样第四步:原始图片-变化后的图片importcv2importnumpyasnpimg=cv2.imread('AM.png')#
- 什么是“知识蒸馏”
清风AI
深度学习人工智能神经网络pythonconda
定义与原理在深度学习领域不断突破的同时,模型的复杂度和计算需求也随之增加。为了解决这一问题,知识蒸馏技术应运而生,成为模型压缩和性能优化的重要手段。本节将详细介绍知识蒸馏的基本概念、工作原理和知识迁移机制。知识蒸馏是一种将大型预训练模型(教师模型)的知识转移到较小模型(学生模型)的技术。这种方法不仅能保留原有模型的性能,还能显著降低模型的复杂度和计算需求,使其更适合在资源受限的环境中部署。知识蒸馏
- Jupyter Notebook代码实现了一个简单的全连接神经网络,用于对MNIST手写数字数据集进行分类任务
pk_xz123456
PyTorch入门案例jupyter神经网络分类
{"cells":[{"cell_type":"code","execution_count":7,"metadata":{
- 决策树ID3算法
小波LFZZB
算法决策树机器学习数据挖掘sklearn
决策树决策树概念决策树,一种基于规则的机器学习方法,主要用于分类和回归,常用作机器学习中的预测模型。树形结构图,树中每个节点表示某个对象,每个分叉路径代表的某个可能的属性值,每个叶结点对应从根节点到该叶节点所经历的路径所表示的对象的值。它通过递归地划分数据空间并在每个分区内拟合一个简单的预测模型来工作。选择分区是为了在每个细分中最大化目标变量的同质性。决策树特点1.树形结构决策树由根节点、内部节点
- 强大的销售团队背后 竟然是大数据分析的身影
蓝儿唯美
数据分析
Mark Roberge是HubSpot的首席财务官,在招聘销售职位时使用了大量数据分析。但是科技并没有挤走直觉。
大家都知道数理学家实际上已经渗透到了各行各业。这些热衷数据的人们通过处理数据理解商业流程的各个方面,以重组弱点,增强优势。
Mark Roberge是美国HubSpot公司的首席财务官,HubSpot公司在构架集客营销现象方面出过一份力——因此他也是一位数理学家。他使用数据分析
- Haproxy+Keepalived高可用双机单活
bylijinnan
负载均衡keepalivedhaproxy高可用
我们的应用MyApp不支持集群,但要求双机单活(两台机器:master和slave):
1.正常情况下,只有master启动MyApp并提供服务
2.当master发生故障时,slave自动启动本机的MyApp,同时虚拟IP漂移至slave,保持对外提供服务的IP和端口不变
F5据说也能满足上面的需求,但F5的通常用法都是双机双活,单活的话还没研究过
服务器资源
10.7
- eclipse编辑器中文乱码问题解决
0624chenhong
eclipse乱码
使用Eclipse编辑文件经常出现中文乱码或者文件中有中文不能保存的问题,Eclipse提供了灵活的设置文件编码格式的选项,我们可以通过设置编码 格式解决乱码问题。在Eclipse可以从几个层面设置编码格式:Workspace、Project、Content Type、File
本文以Eclipse 3.3(英文)为例加以说明:
1. 设置Workspace的编码格式:
Windows-&g
- 基础篇--resources资源
不懂事的小屁孩
android
最近一直在做java开发,偶尔敲点android代码,突然发现有些基础给忘记了,今天用半天时间温顾一下resources的资源。
String.xml 字符串资源 涉及国际化问题
http://www.2cto.com/kf/201302/190394.html
string-array
- 接上篇补上window平台自动上传证书文件的批处理问卷
酷的飞上天空
window
@echo off
: host=服务器证书域名或ip,需要和部署时服务器的域名或ip一致 ou=公司名称, o=公司名称
set host=localhost
set ou=localhost
set o=localhost
set password=123456
set validity=3650
set salias=s
- 企业物联网大潮涌动:如何做好准备?
蓝儿唯美
企业
物联网的可能性也许是无限的。要找出架构师可以做好准备的领域然后利用日益连接的世界。
尽管物联网(IoT)还很新,企业架构师现在也应该为一个连接更加紧密的未来做好计划,而不是跟上闸门被打开后的集成挑战。“问题不在于物联网正在进入哪些领域,而是哪些地方物联网没有在企业推进,” Gartner研究总监Mike Walker说。
Gartner预测到2020年物联网设备安装量将达260亿,这些设备在全
- spring学习——数据库(mybatis持久化框架配置)
a-john
mybatis
Spring提供了一组数据访问框架,集成了多种数据访问技术。无论是JDBC,iBATIS(mybatis)还是Hibernate,Spring都能够帮助消除持久化代码中单调枯燥的数据访问逻辑。可以依赖Spring来处理底层的数据访问。
mybatis是一种Spring持久化框架,要使用mybatis,就要做好相应的配置:
1,配置数据源。有很多数据源可以选择,如:DBCP,JDBC,aliba
- Java静态代理、动态代理实例
aijuans
Java静态代理
采用Java代理模式,代理类通过调用委托类对象的方法,来提供特定的服务。委托类需要实现一个业务接口,代理类返回委托类的实例接口对象。
按照代理类的创建时期,可以分为:静态代理和动态代理。
所谓静态代理: 指程序员创建好代理类,编译时直接生成代理类的字节码文件。
所谓动态代理: 在程序运行时,通过反射机制动态生成代理类。
一、静态代理类实例:
1、Serivce.ja
- Struts1与Struts2的12点区别
asia007
Struts1与Struts2
1) 在Action实现类方面的对比:Struts 1要求Action类继承一个抽象基类;Struts 1的一个具体问题是使用抽象类编程而不是接口。Struts 2 Action类可以实现一个Action接口,也可以实现其他接口,使可选和定制的服务成为可能。Struts 2提供一个ActionSupport基类去实现常用的接口。即使Action接口不是必须实现的,只有一个包含execute方法的P
- 初学者要多看看帮助文档 不要用js来写Jquery的代码
百合不是茶
jqueryjs
解析json数据的时候需要将解析的数据写到文本框中, 出现了用js来写Jquery代码的问题;
1, JQuery的赋值 有问题
代码如下: data.username 表示的是: 网易
$("#use
- 经理怎么和员工搞好关系和信任
bijian1013
团队项目管理管理
产品经理应该有坚实的专业基础,这里的基础包括产品方向和产品策略的把握,包括设计,也包括对技术的理解和见识,对运营和市场的敏感,以及良好的沟通和协作能力。换言之,既然是产品经理,整个产品的方方面面都应该能摸得出门道。这也不懂那也不懂,如何让人信服?如何让自己懂?就是不断学习,不仅仅从书本中,更从平时和各种角色的沟通
- 如何为rich:tree不同类型节点设置右键菜单
sunjing
contextMenutreeRichfaces
组合使用target和targetSelector就可以啦,如下: <rich:tree id="ruleTree" value="#{treeAction.ruleTree}" var="node" nodeType="#{node.type}"
selectionChangeListener=&qu
- 【Redis二】Redis2.8.17搭建主从复制环境
bit1129
redis
开始使用Redis2.8.17
Redis第一篇在Redis2.4.5上搭建主从复制环境,对它的主从复制的工作机制,真正的惊呆了。不知道Redis2.8.17的主从复制机制是怎样的,Redis到了2.4.5这个版本,主从复制还做成那样,Impossible is nothing! 本篇把主从复制环境再搭一遍看看效果,这次在Unbuntu上用官方支持的版本。 Ubuntu上安装Red
- JSONObject转换JSON--将Date转换为指定格式
白糖_
JSONObject
项目中,经常会用JSONObject插件将JavaBean或List<JavaBean>转换为JSON格式的字符串,而JavaBean的属性有时候会有java.util.Date这个类型的时间对象,这时JSONObject默认会将Date属性转换成这样的格式:
{"nanos":0,"time":-27076233600000,
- JavaScript语言精粹读书笔记
braveCS
JavaScript
【经典用法】:
//①定义新方法
Function .prototype.method=function(name, func){
this.prototype[name]=func;
return this;
}
//②给Object增加一个create方法,这个方法创建一个使用原对
- 编程之美-找符合条件的整数 用字符串来表示大整数避免溢出
bylijinnan
编程之美
import java.util.LinkedList;
public class FindInteger {
/**
* 编程之美 找符合条件的整数 用字符串来表示大整数避免溢出
* 题目:任意给定一个正整数N,求一个最小的正整数M(M>1),使得N*M的十进制表示形式里只含有1和0
*
* 假设当前正在搜索由0,1组成的K位十进制数
- 读书笔记
chengxuyuancsdn
读书笔记
1、Struts访问资源
2、把静态参数传递给一个动作
3、<result>type属性
4、s:iterator、s:if c:forEach
5、StringBuilder和StringBuffer
6、spring配置拦截器
1、访问资源
(1)通过ServletActionContext对象和实现ServletContextAware,ServletReque
- [通讯与电力]光网城市建设的一些问题
comsci
问题
信号防护的问题,前面已经说过了,这里要说光网交换机与市电保障的关系
我们过去用的ADSL线路,因为是电话线,在小区和街道电力中断的情况下,只要在家里用笔记本电脑+蓄电池,连接ADSL,同样可以上网........
 
- oracle 空间RESUMABLE
daizj
oracle空间不足RESUMABLE错误挂起
空间RESUMABLE操作 转
Oracle从9i开始引入这个功能,当出现空间不足等相关的错误时,Oracle可以不是马上返回错误信息,并回滚当前的操作,而是将操作挂起,直到挂起时间超过RESUMABLE TIMEOUT,或者空间不足的错误被解决。
这一篇简单介绍空间RESUMABLE的例子。
第一次碰到这个特性是在一次安装9i数据库的过程中,在利用D
- 重构第一次写的线程池
dieslrae
线程池 python
最近没有什么学习欲望,修改之前的线程池的计划一直搁置,这几天比较闲,还是做了一次重构,由之前的2个类拆分为现在的4个类.
1、首先是工作线程类:TaskThread,此类为一个工作线程,用于完成一个工作任务,提供等待(wait),继续(proceed),绑定任务(bindTask)等方法
#!/usr/bin/env python
# -*- coding:utf8 -*-
- C语言学习六指针
dcj3sjt126com
c
初识指针,简单示例程序:
/*
指针就是地址,地址就是指针
地址就是内存单元的编号
指针变量是存放地址的变量
指针和指针变量是两个不同的概念
但是要注意: 通常我们叙述时会把指针变量简称为指针,实际它们含义并不一样
*/
# include <stdio.h>
int main(void)
{
int * p; // p是变量的名字, int *
- yii2 beforeSave afterSave beforeDelete
dcj3sjt126com
delete
public function afterSave($insert, $changedAttributes)
{
parent::afterSave($insert, $changedAttributes);
if($insert) {
//这里是新增数据
} else {
//这里是更新数据
}
}
 
- timertask
shuizhaosi888
timertask
java.util.Timer timer = new java.util.Timer(true);
// true 说明这个timer以daemon方式运行(优先级低,
// 程序结束timer也自动结束),注意,javax.swing
// 包中也有一个Timer类,如果import中用到swing包,
// 要注意名字的冲突。
TimerTask task = new
- Spring Security(13)——session管理
234390216
sessionSpring Security攻击保护超时
session管理
目录
1.1 检测session超时
1.2 concurrency-control
1.3 session 固定攻击保护
 
- 公司项目NODEJS实践0.3[ mongo / session ...]
逐行分析JS源代码
mongodbsessionnodejs
http://www.upopen.cn
一、前言
书接上回,我们搭建了WEB服务端路由、模板等功能,完成了register 通过ajax与后端的通信,今天主要完成数据与mongodb的存取,实现注册 / 登录 /
- pojo.vo.po.domain区别
LiaoJuncai
javaVOPOJOjavabeandomain
POJO = "Plain Old Java Object",是MartinFowler等发明的一个术语,用来表示普通的Java对象,不是JavaBean, EntityBean 或者 SessionBean。POJO不但当任何特殊的角色,也不实现任何特殊的Java框架的接口如,EJB, JDBC等等。
即POJO是一个简单的普通的Java对象,它包含业务逻辑
- Windows Error Code
OhMyCC
windows
0 操作成功完成.
1 功能错误.
2 系统找不到指定的文件.
3 系统找不到指定的路径.
4 系统无法打开文件.
5 拒绝访问.
6 句柄无效.
7 存储控制块被损坏.
8 存储空间不足, 无法处理此命令.
9 存储控制块地址无效.
10 环境错误.
11 试图加载格式错误的程序.
12 访问码无效.
13 数据无效.
14 存储器不足, 无法完成此操作.
15 系
- 在storm集群环境下发布Topology
roadrunners
集群stormtopologyspoutbolt
storm的topology设计和开发就略过了。本章主要来说说如何在storm的集群环境中,通过storm的管理命令来发布和管理集群中的topology。
1、打包
打包插件是使用maven提供的maven-shade-plugin,详细见maven-shade-plugin。
<plugin>
<groupId>org.apache.maven.
- 为什么不允许代码里出现“魔数”
tomcat_oracle
java
在一个新项目中,我最先做的事情之一,就是建立使用诸如Checkstyle和Findbugs之类工具的准则。目的是制定一些代码规范,以及避免通过静态代码分析就能够检测到的bug。 迟早会有人给出案例说这样太离谱了。其中的一个案例是Checkstyle的魔数检查。它会对任何没有定义常量就使用的数字字面量给出警告,除了-1、0、1和2。 很多开发者在这个检查方面都有问题,这可以从结果
- zoj 3511 Cake Robbery(线段树)
阿尔萨斯
线段树
题目链接:zoj 3511 Cake Robbery
题目大意:就是有一个N边形的蛋糕,切M刀,从中挑选一块边数最多的,保证没有两条边重叠。
解题思路:有多少个顶点即为有多少条边,所以直接按照切刀切掉点的个数排序,然后用线段树维护剩下的还有哪些点。
#include <cstdio>
#include <cstring>
#include <vector&