介绍几个重要操作:
a = tf.fill([1,2], value=2.)
b = tf.norm(a)# 二范数
#第二种计算方法
# 计算验证
a = tf.square(a)
log("a的平方:", a)
a = tf.reduce_sum(a)
log("a平方后的和:", a)
b = tf.sqrt(a)
log("a平方和后开根号:", b)
#二者结果是一样的
b = tf.norm(a,ord=1)#一范数
print(b)
print(tf.reduce_sum(tf.abs(a)))#所有值得绝对值之和
# 指定计算轴:axis=1
b = tf.norm(a, ord=1, axis=1)
log("a的axis=1的1范数b:", b)
a = tf.range(12, dtype=tf.float32)
a = tf.reshape(a, (4,3))
log("a数组:", a)
b = tf.reduce_min(a)
log("a数组最小值:", b)
b = tf.reduce_max(a)
log("a数组最大值:", b)
b = tf.reduce_mean(a)
log("a数组平均值:", b)
b = tf.reduce_min(a, axis=0)
log("a数组axis=0最小值:", b)
b = tf.reduce_max(a, axis=0)
log("a数组axis=0最大值:", b)
b = tf.reduce_mean(a, axis=0)
log("a数组axis=0平均值:", b)
b = tf.reduce_min(a, axis=1)
log("a数组axis=1最小值:", b)
b = tf.reduce_max(a, axis=1)
log("a数组axis=1最大值:", b)
b = tf.reduce_mean(a, axis=1)
log("a数组axis=1平均值:", b)
其实都挺简单的,和numpy和torch都差不多。
def log(prefix="", val=""):
print(prefix, val, "\n")
# 定义一个随机数组
a = tf.random.uniform((3,10), minval=0, maxval=10, dtype=tf.int32)
log("a", a)
# 取最大索引位置数组,通常用于取得模型预测结果
b = tf.argmax(a, axis=1)
log("a数组axis=1的最大值索引位置:", b)
# 取最小索引位置数组
b = tf.argmin(a, axis=1)
log("a数组axis=1的最小值索引位置:", b)
一些python基础语法
a = tf.random.uniform((1,10), minval=0, maxval=10, dtype=tf.int32)
b = tf.random.uniform((1,10), minval=0, maxval=10, dtype=tf.int32)
log("a:", a)
log("b:", b)
# a,b数组比较
log("a==b", a==b)
# 相同元素输出
log(a[a==b])
# 相同元素索引位置输出
log(tf.where(a==b))
#################################################
# 声明数组a
a = tf.random.shuffle(tf.range(10))
log("a", a)
# a tf.Tensor([8 2 0 5 7 9 3 1 4 6], shape=(10,), dtype=int32)
#################################################
# 升序排列
b = tf.sort(a, direction="ASCENDING")
log("b", b)
# 降序排列
b = tf.sort(a, direction="DESCENDING")
log("b", b)
# b tf.Tensor([0 1 2 3 4 5 6 7 8 9], shape=(10,), dtype=int32)
# b tf.Tensor([9 8 7 6 5 4 3 2 1 0], shape=(10,), dtype=int32)
#################################################
# 升序排列,返回索引位置
b = tf.argsort(a, direction="ASCENDING")
log("b", b)
# 降序排列,返回索引位置
b = tf.argsort(a, direction="DESCENDING")
log("b", b)
# b tf.Tensor([2 7 1 6 8 3 9 4 0 5], shape=(10,), dtype=int32)
# b tf.Tensor([5 0 4 9 3 8 6 1 7 2], shape=(10,), dtype=int32)
#################################################
# 按索引位置b, 从数组a中收集数据
c = tf.gather(a, b)
log("c", c)
# c tf.Tensor([9 8 7 6 5 4 3 2 1 0], shape=(10,), dtype=int32)
#################################################
# 声明2维数组a
a = tf.random.uniform([3,5], maxval=10, dtype=tf.int32)
log("a", a)
# a tf.Tensor(
# [[2 5 8 0 4]
# [1 7 2 4 5]
# [6 0 2 5 0]], shape=(3, 5), dtype=int32)
#################################################
# 升序排列
b = tf.sort(a, axis=1, direction="ASCENDING")
log("b", b)
# 降序排列
b = tf.sort(a, axis=1, direction="DESCENDING")
log("b", b)
# b tf.Tensor(
# [[0 2 4 5 8]
# [1 2 4 5 7]
# [0 0 2 5 6]], shape=(3, 5), dtype=int32)
# b tf.Tensor(
# [[8 5 4 2 0]
# [7 5 4 2 1]
# [6 5 2 0 0]], shape=(3, 5), dtype=int32)
#################################################
# 升序排列,返回索引位置
b = tf.argsort(a, axis=1, direction="ASCENDING")
log("b", b)
# 降序排列,返回索引位置
b = tf.argsort(a, axis=1, direction="DESCENDING")
log("b", b)
# b tf.Tensor(
# [[3 0 4 1 2]
# [0 2 3 4 1]
# [1 4 2 3 0]], shape=(3, 5), dtype=int32)
# b tf.Tensor(
# [[2 1 4 0 3]
# [1 4 3 2 0]
# [0 3 2 1 4]], shape=(3, 5), dtype=int32)
################################################
# 2维数组定义
a = tf.random.uniform([3,5], maxval=10, dtype=tf.int32)
log("a", a)
# a tf.Tensor(
# [[1 2 5 8 7]
# [6 1 4 3 9]
# [5 9 6 5 5]], shape=(3, 5), dtype=int32)
#################################################
# 取数组每行前3位
b = tf.math.top_k(a, k=3, sorted=True)
# 前3位数值
log("b", b.values)
# 前3位数值索引
log("b", b.indices)
# b tf.Tensor(
# [[8 7 5]
# [9 6 4]
# [9 6 5]], shape=(3, 3), dtype=int32)
# b tf.Tensor(
# [[3 4 2]
# [4 0 2]
# [1 2 0]], shape=(3, 3), dtype=int32)