LangChain系列文章
在Langchain框架中,tools
是一种重要的组件,用于增强和扩展智能代理(agent)的功能。这些tools
提供了一系列附加能力,使得代理可以执行特定的任务,处理复杂的数据类型,或与外部服务进行交互。以下是对Langchain中tools
的详细解释:
tools
在Langchain中指的是可以被智能代理用来执行特定操作或任务的功能模块或服务。tools
通常通过API或特定的编程接口集成到Langchain框架中。tools
,以适应特定的应用场景。tools
扩展代理的能力,让其能处理更多类型的任务。tools
。Langchain中的tools
为开发者提供了一种强大的方式来增强智能代理的功能和适用范围。通过合理地选择和配置这些工具,可以创建出能够处理复杂任务、提供丰富交互体验的高效智能代理。然而,开发者需要考虑到集成外部工具的安全性和稳定性,确保整体系统的可靠运行。
在Langchain中,arxiv
是一种特定的工具(tool),用于与Arxiv API进行交互。Arxiv API是一个公开的接口,允许用户访问Arxiv数据库中的大量科学论文和出版物。下面是对arxiv
工具的详细介绍:
ArxivAPIWrapper
是一个封装器(wrapper),它简化了与Arxiv API的交互,使得在Langchain中可以方便地获取论文信息。ArxivAPIWrapper
的实例。这通常在初始化智能代理时通过load_tools
函数完成。总的来说,Langchain中的arxiv
工具提供了一个方便的接口,让智能代理能够轻松访问和利用Arxiv上的丰富学术资源。
读取paper 的信息 Large Language Models
Tools/chat_tools_arxiv.py
这段代码主要用于演示如何使用Langchain结合OpenAI聊天模型和Arxiv API来获取论文相关的信息。代码中包含了从加载环境变量、初始化智能代理到使用API获取数据的完整流程。
from langchain.llms import OpenAI # 导入Langchain库的OpenAI模块,提供与OpenAI模型的交互功能
from langchain.prompts import PromptTemplate # 导入用于创建和管理提示模板的模块
from langchain.chains import LLMChain # 导入用于构建基于大型语言模型的处理链的模块
from dotenv import load_dotenv # 导入dotenv库,用于从.env文件加载环境变量,管理敏感数据如API密钥
from langchain.chat_models import ChatOpenAI # 导入用于创建和管理OpenAI聊天模型的类
from langchain.agents import AgentType, initialize_agent, load_tools # 导入用于初始化智能代理和加载工具的函数
from langchain.utilities import ArxivAPIWrapper # 导入Arxiv API的包装器,用于与Arxiv数据库交互
load_dotenv() # 调用dotenv函数加载.env文件中的环境变量
llm = ChatOpenAI(temperature=0.0) # 创建一个温度参数为0.0的OpenAI聊天模型实例,温度0意味着输出更确定性
tools = load_tools(["arxiv"]) # 加载Arxiv工具,以便代理可以访问Arxiv数据库信息
agent_chain = initialize_agent(
tools,
llm,
agent=AgentType.ZERO_SHOT_REACT_DESCRIPTION,
verbose=True, # 初始化一个智能代理,使用零次学习的方式来根据描述做出反应
)
paper = "2307.05782"
response = agent_chain.run("请描述论文的主要内容 " + paper) # 运行代理链,获取指定论文ID的内容描述
print(response) # 打印论文描述的响应
arxiv = ArxivAPIWrapper()
docs = arxiv.run(paper) # 使用Arxiv API获取特定论文的详细信息
print(docs) # 打印论文的详细信息
author = arxiv.run("Michael R. Douglas") # 使用Arxiv API获取指定作者的信息
print(author) # 打印作者信息
nondocs = arxiv.run("1605.08386WWW") # 尝试使用一个非标准格式的ID来获取信息,可能无法正确检索
print(nondocs) # 打印这次非标准检索的结果
运行结果如下
(develop)⚡ % python Tools/chat_tools_arxiv.py ~/Workspace/LLM/langchain-llm-app
> Entering new AgentExecutor chain...
I need to find the main content of the paper with the given arXiv ID.
Action: arxiv
Action Input: 2307.05782
Observation: Published: 2023-10-06
Title: Large Language Models
Authors: Michael R. Douglas
Summary: Artificial intelligence is making spectacular progress, and one of the best
examples is the development of large language models (LLMs) such as OpenAI's
GPT series. In these lectures, written for readers with a background in
mathematics or physics, we give a brief history and survey of the state of the
art, and describe the underlying transformer architecture in detail. We then
explore some current ideas on how LLMs work and how models trained to predict
the next word in a text are able to perform other tasks displaying
intelligence.
Thought:The main content of the paper is about large language models, specifically focusing on the development of OpenAI's GPT series. It provides a history and survey of the state of the art, describes the transformer architecture, and explores current ideas on how LLMs work and their ability to perform various tasks displaying intelligence.
Final Answer: The main content of the paper is about large language models, with a focus on OpenAI's GPT series and their underlying transformer architecture.
> Finished chain.
The main content of the paper is about large language models, with a focus on OpenAI's GPT series and their underlying transformer architecture.
(develop)⚡ % python Tools/chat_tools_arxiv.py ~/Workspace/LLM/langchain-llm-app
Published: 2023-10-06
Title: Large Language Models
Authors: Michael R. Douglas
Summary: Artificial intelligence is making spectacular progress, and one of the best
examples is the development of large language models (LLMs) such as OpenAI's
GPT series. In these lectures, written for readers with a background in
mathematics or physics, we give a brief history and survey of the state of the
art, and describe the underlying transformer architecture in detail. We then
explore some current ideas on how LLMs work and how models trained to predict
the next word in a text are able to perform other tasks displaying
intelligence.
(develop)⚡ % python Tools/chat_tools_arxiv.py ~/Workspace/LLM/langchain-llm-app
Published: 2006-02-24
Title: Understanding the landscape
Authors: Michael R. Douglas
Summary: Based on comments made at the 23rd Solvay Conference, December 2005,
Brussels.
Published: 2005-08-09
Title: Random algebraic geometry, attractors and flux vacua
Authors: Michael R. Douglas
Summary: This is a submission to the Encyclopedia of Mathematical Physics (Elsevier,
2006) and conforms to its referencing guidelines.
Published: 2001-05-02
Title: D-Branes and N=1 Supersymmetry
Authors: Michael R. Douglas
Summary: We discuss the recent proposal that BPS D-branes in Calabi-Yau
compactification of type II string theory are Pi-stable objects in the derived
category of coherent sheaves.
(develop)⚡ % python Tools/chat_tools_arxiv.py ~/Workspace/LLM/langchain-llm-app
No good Arxiv Result was found
Langchain中的ZERO_SHOT_REACT_DESCRIPTION
是一种用于定义和构建智能代理(agent)的方法,属于Langchain框架中的一个组件。它专注于实现代理的“零次学习”(zero-shot learning)能力,即在没有针对具体任务进行专门训练的情况下,根据描述直接做出反应和处理问题。下面详细解释这个概念:
ZERO_SHOT_REACT_DESCRIPTION
在Langchain中为开发者提供了一种构建能够处理多种任务的通用智能代理的方法。这种方法特别适合于快速开发和部署、需要高度灵活性和广泛适用性的应用场景。然而,对于需要高度专业化或极端精确度的任务,可能需要考虑其他更专门化的解决方案。
https://github.com/zgpeace/pets-name-langchain/tree/develop
https://python.langchain.com/docs/integrations/tools/arxiv