java n叉哈夫曼树_哈夫曼树(最优二叉树)及其Java实现

一、定义

一些定义:

节点之间的路径长度:在树中从一个结点到另一个结点所经历的分支,构成了这两个结点间的路径上的经过的分支数称为它的路径长度

树的路径长度:从树的根节点到树中每一结点的路径长度之和。在结点数目相同的二叉树中,完全二叉树的路径长度最短。

结点的权:在一些应用中,赋予树中结点的一个有某种意义的实数。

结点的带权路径长度:结点到树根之间的路径长度与该结点上权的乘积。

树的带权路径长度(Weighted Path Length of Tree:WPL):定义为树中所有叶子结点的带权路径长度之和

如下面的二叉树,叶子节点的权值分别为5、6、2、4、7,的带权路径长度计算:

java n叉哈夫曼树_哈夫曼树(最优二叉树)及其Java实现_第1张图片

最优二叉树:从已给出的目标带权结点(单独的结点) 经过一种方式的组合形成一棵树.使树的权值最小.。最优二叉树是带权路径长度最短的二叉树。根据结点的个数,权值的不同,最优二叉树的形状也各不相同。它们的共同点是:带权值的结点都是叶子结点。权值越小的结点,其到根结点的路径越长。

如,给定4个叶子结点a,b,c和d,分别带权7,5,2和4。构造如下图所示的三棵二叉树(还有许多棵),它们的带权路径长度分别为:

(a)WPL=7*2+5*2+2*2+4*2=36

(b)WPL=7*3+5*3+2*1+4*2=46

(c)WPL=7*1+5*2+2*3+4*3=35

其中(c)树的WPL最小,可以验证,它就是哈夫曼树。

注意:

① 叶子上的权值均相同时,完全二叉树一定是最优二叉树,否则完全二叉树不一定是最优二叉树。

② 最优二叉树中,权越大的叶子离根越近。

③ 最优二叉树的形态不唯一,WPL最小。

二、构造哈夫曼树

1) 根据给定的n个权值{w1, w2, w3, w4......wn}构成n棵二叉树的森林 F={T1 , T2 , T3.....Tn},其中每棵二叉树只有一个权值为wi 的根节点,其左右子树都为空;

2) 在森林F中选择两棵根节点的权值最小的二叉树,作为一棵新的二叉树的左右子树,且令新的二叉树的根节点的权值为其左右子树的权值和;

3)从F中删除被选中的那两棵子树,并且把构成的新的二叉树加到F森林中;

4)重复2 ,3 操作,直到森林只含有一棵二叉树为止,此时得到的这棵二叉树就是哈夫曼树。

构造过程如下图:

三、Java实现

对指定节点创建哈夫曼树:package com.liuhao.DataStructures;

import java.util.ArrayDeque;

import java.util.ArrayList;

import java.util.List;

import java.util.Queue;

public class HuffmanTree {

public static class Node {

E data;

double weight;

Node leftChild;

Node rightChild;

public Node(E data, double weight) {

super();

this.data = data;

this.weight = weight;

}

public String toString() {

return "Node[data=" + data + ", weight=" + weight + "]";

}

}

public static void main(String[] args) {

List nodes = new ArrayList();

nodes.add(new Node("A", 40.0));

nodes.add(new Node("B", 8.0));

nodes.add(new Node("C", 10.0));

nodes.add(new Node("D", 30.0));

nodes.add(new Node("E", 10.0));

nodes.add(new Node("F", 2.0));

Node root = HuffmanTree.createTree(nodes);

System.out.println(breadthFirst(root));

}

/**

* 构造哈夫曼树

*

* @param nodes

* 节点集合

* @return 构造出来的哈夫曼树的根节点

*/

private static Node createTree(List nodes) {

// 只要nodes数组中还有2个以上的节点

while (nodes.size() > 1) {

quickSort(nodes);

//获取权值最小的两个节点

Node left = nodes.get(nodes.size()-1);

Node right = nodes.get(nodes.size()-2);

//生成新节点,新节点的权值为两个子节点的权值之和

Node parent = new Node(null, left.weight + right.weight);

//让新节点作为两个权值最小节点的父节点

parent.leftChild = left;

parent.rightChild = right;

//删除权值最小的两个节点

nodes.remove(nodes.size()-1);

nodes.remove(nodes.size()-1);

//将新节点加入到集合中

nodes.add(parent);

}

return nodes.get(0);

}

/**

* 将指定集合中的i和j索引处的元素交换

*

* @param nodes

* @param i

* @param j

*/

private static void swap(List nodes, int i, int j) {

Node tmp;

tmp = nodes.get(i);

nodes.set(i, nodes.get(j));

nodes.set(j, tmp);

}

/**

* 实现快速排序算法,用于对节点进行排序

*

* @param nodes

* @param start

* @param end

*/

private static void subSort(List nodes, int start, int end) {

if (start < end) {

// 以第一个元素作为分界值

Node base = nodes.get(start);

// i从左边搜索,搜索大于分界值的元素的索引

int i = start;

// j从右边开始搜索,搜索小于分界值的元素的索引

int j = end + 1;

while (true) {

// 找到大于分界值的元素的索引,或者i已经到了end处

while (i < end && nodes.get(++i).weight >= base.weight)

;

// 找到小于分界值的元素的索引,或者j已经到了start处

while (j > start && nodes.get(--j).weight <= base.weight)

;

if (i < j) {

swap(nodes, i, j);

} else {

break;

}

}

swap(nodes, start, j);

//递归左边子序列

subSort(nodes, start, j - 1);

//递归右边子序列

subSort(nodes, j + 1, end);

}

}

public static void quickSort(List nodes){

subSort(nodes, 0, nodes.size()-1);

}

//广度优先遍历

public static List breadthFirst(Node root){

Queue queue = new ArrayDeque();

List list = new ArrayList();

if(root!=null){

//将根元素加入“队列”

queue.offer(root);

}

while(!queue.isEmpty()){

//将该队列的“队尾”元素加入到list中

list.add(queue.peek());

Node p = queue.poll();

//如果左子节点不为null,将它加入到队列

if(p.leftChild != null){

queue.offer(p.leftChild);

}

//如果右子节点不为null,将它加入到队列

if(p.rightChild != null){

queue.offer(p.rightChild);

}

}

return list;

}

}以上代码中的关键步骤包括:

(1)对list集合中所有节点进行排序;

(2)找出list集合中权值最小的两个节点;

(3)以权值最小的两个节点作为子节点创建新节点;

(4)从list集合中删除权值最小的两个节点,将新节点添加到list集合中

程序采用循环不断地执行上面的步骤,直到list集合中只剩下一个节点,最后剩下的这个节点就是哈夫曼树的根节点

四、哈夫曼编码

根据哈夫曼树可以解决报文编码的问题。假设需要把一个字符串,如“abcdabcaba”进行编码,将它转换为唯一的二进制码,但是要求转换出来的二进制码的长度最小。

假设每个字符在字符串中出现频率为W,其编码长度为L,编码字符n个,则编码后二进制码的总长度为W1L1+W2L2+…+WnLn,这恰好是哈夫曼树的处理原则。因此可以采用哈夫曼树的构造原理进行二进制编码,从而使得电文长度最短。

对于“abcdabcaba”,共有a、b、c、d4个字符,出现次数分别为4、3、2、1,相当于它们的权值,将a、b、c、d以出现次数为权值构造哈夫曼树,得到下左图的结果。

从哈夫曼树根节点开始,对左子树分配代码“0”,对右子树分配“1”,一直到达叶子节点。然后,将从树根沿着每条路径到达叶子节点的代码排列起来,便得到每个叶子节点的哈夫曼编码,如下右图。

java n叉哈夫曼树_哈夫曼树(最优二叉树)及其Java实现_第2张图片

从图中可以看出,a、b、c、d对应的编码分别为0、10、110、111,然后将字符串“abcdabcaba”转换为对应的二进制码就是0101101110101100100,长度仅为19。这也就是最短二进制编码,也称为哈夫曼编码。

原文:http://blog.csdn.net/bruce_6/article/details/38656413

你可能感兴趣的:(java,n叉哈夫曼树)