Day02 Liunx高级程序设计2-文件IO

系统调用

概念

是操作系统提供给用户使其可以操作内核提供服务的一组函数接口

用户态和内核态

其中 ring 0 权限最高,可以使用所有 CPU 指令, ring 3 权限最低,仅能使用
常规 CPU 指令,这个级别的权限不能使用访问硬件资源的指令,比如 IO 读写、网卡
访问、申请内存都不行,都没有权限
Linux 系统内核采用了: ring 0 ring 3 2 个权限
ring 0: 内核态 , 完全在 操作系统内核 中运行,由专门的 内核线程 在 CPU
执行其任务
ring 3: 用户态 , 在 应用程序 中运行,由 用户线程 在 CPU 中执行其任务
Linux 系统中所有对硬件资源的操作都必须在 内核态 状态下执行,比如 IO
读写,网络的操作
区别:
1, 用户态的代码必须由 用户线程 去执行、内核态的代码必须由 内核线程 去执行
2, 用户态、内核态 或者说 用户线程、内核线程 可以使用的资源是不同的,尤体现在
内存资源上。 Linux 内核对每一个进程都会分配 4G 虚拟内存空间地址
用户态: --> 只能操作 0-3G 的内存地址
内核态: --> 0-4G 的内存地址都可以操作,尤其是对 3-4G 的高位地址必须由
内核态去操作,因为所有进程的 3-4G 的高位地址使用的都是同一块、专门留给 系统
内核 使用的 1G 物理内存
3. 所有对 硬件资源、系统内核数据 的访问都必须由内核态去执行
如何切换内核态
        使用软件中断
软件中断与硬件中断
软件中断
软件中断是由软件程序触发的中断,如系统调用、软中断、异常等。软件中断不是
由硬件设备触发的,而是由软件程序主动发起的,一般用于系统调用、进程切换、异常
处理等任务。软件中断需要在程序中进行调用,其响应速度和实时性相对较差,但是具
有灵活性和可控性高的特点。
如程序中出现的内存溢出 , 数组下标越界等
硬件中断
硬件中断是由硬件设备触发的中断,如时钟中断、串口接收中断、外部中断等。当
硬件设备有数据或事件需要处理时,会向 CPU 发送一个中断请求, CPU 在收到中断请求
后,会立即暂停当前正在执行的任务,进入中断处理程序中处理中断请求。硬件中断具
有实时性强、可靠性高、处理速度快等特点。
如当点击按钮扫描系统高低电频时等

系统调用与库函数的关系

库函数可以调用系统调用提供的接口,也可以不调用系统提供的接口

不调用系统调用的库函数 :strcpy,bzero
调用系统调用的库函数 :fread,printf

注意:

系统调用是需要时间的,程序中频繁的使用系统调用会降低程序的运行效率。当运行内核
代码时, CPU 工作在内核态,在系统调用发生前需要保存用户态的栈和内存环境,然后转
入内核态工作。系统调用结束后,又要切换回用户态。这种环境的切换会消耗掉许多时
间。

文件操作

文件描述符概念

文件描述符是一个非负整数 , 代表已打开的文件。
每一个进程都会创建一张文件描述符表 记录的是当前进程打开的所有文件描述符。
每一个进程默认打开三个文件描述符:
0( 标准输入设备 scanf)
1( 标准输出设备 printf)
2( 标准错误输入设备 perror)
新打开的文件描述符 为最小可用文件描述符。
扩展
ulimit 是一个计算机命令,用于 shell 启动进程所占用的资源,可用于修改系统资源限
制。使用 ulimit 命令用于临时修改资源限制,如果需要永久修改需要将设置写入配置文
/etc/security/limits.conf
ulimit -a 查看 open files 打开的文件最大数。
ulimit -n 最大数 设置 open files 打开的文件最大数

文件读写

文件磁盘权限

第一位说是文件还是文件夹
2~4 位说明所有者权限
5~7 位说明同组用户权限
8~10 位说明其他用户权限
r 4
w 2
x 1
注意
man 2 系统调用函数
查看系统调用函数对应的头文件与函数信息
语法
open:打开文件
所需头文件
        #include
        #include
        #include
函数
        int open(const char *pathname, int flags);
        int open(const char *pathname, int flags, mode_t mode);
参数
        pathname:打开的文件地址
        flags:代码操作文件的权限
        必选项
                O_RDONLY 以只读的方式打开
                O_WRONLY 以只写的方式打开
                O_RDWR 以可读、可写的方式打开
        可选项
                O_CREAT 文件不存在则创建文件,使用此选项时需使用 mode 说明文件的权限
                O_EXCL 如果同时指定了 O_CREAT ,且文件已经存在 , 则打开 , 如果文件不存在则新建
                O_TRUNC 如果文件存在,则清空文件内容
                O_APPEND 写文件时,数据添加到文件末尾
                O_NONBLOCK 对于设备文件, O_NONBLOCK 方式打开可以做非阻塞
I/O
        mode:文件在磁盘中的权限
        格式:
                0ddd
                d的取值:4( 可读 ),2( 可写 ),1( 可执行 )
                第一个d:所有者权限
                第二个d:同组用户权限
                第三个d:其他用户权限
        如果需要可读可写就是6, 可读可执行 5
        如:
                0666:所有者可读可写, 同组用户可读可写 , 其他用户可读可写
                0765:所有者可读可写可执行, 同组用户可读可写 , 其他用户可读可执行
返回值:
        成功:得到最小可用的文件描述符
        失败:-1
经验 :
        操作已有文件使用两参
        新建文件使用三参
close 关闭文件
所需头文件
#include
函数
int close(int fd);
参数
关闭的文件描述符
返回值
成功: 0
失败: -1, 并设置 errno
示例 : 以读的方式打开关闭文件
#include 
#include 
#include 
#include 
#include 
int main(int argc, char const *argv[])
{
//1打开文件
// man 2 系统调用函数名
// int open(const char *pathname, int flags);
// int open(const char *pathname, int flags, mode_t mode);
int fileTag = open("a.txt",O_RDONLY);
if (fileTag < 0)
{
printf("读取文件不存在,文件标识符为:%d\n",fileTag);
return 0;
}
printf("文件打开成功,文件标识符为:%d\n",fileTag);
int tag = close(fileTag);
if (tag < 0)
{
printf("关闭文件失败\n");
}
else
{
printf("关闭文件成功\n");
}
return 0;
}
示例 : 以写的方式打开关闭文件
#include 
#include 
#include 
#include 
#include 
int main()
{
    int fd_w = open("text.txt",O_WRONLY | O_CREAT,0666);
    if(fd_w < 0)
    {
        printf("文件打开失败\n");
        return 0;
    }
    printf("文件打开成功,文件标识符是:%d\n",fd_w);
    int tag = close(fd_w);
    if(tag < 0)
    {
        printf("文件关闭失败\n");
    }
    else
    {
        printf("文件关闭成功\n");
    }
    return 0;
}

write 写入
所需头文件
        #include
函数
         ssize_t write(int fd, const void *buf, size_t count);
        int len = write(filename,str,sizeof(str)-1);
参数
        fd:写入的文件描述符
        buf:写入的内容首地址
        count:写入的长度 , 单位字节
返回值
        成功: 返回写入的内容的长度 , 单位字节
        失败:-1
示例:
#include 
#include 
#include 
#include 
#include 
int main()
{
    int filename = open("text.txt",O_WRONLY | O_CREAT | O_APPEND,0766);
    if(filename < 0)
    {
        printf("文件打开失败\n");
        return 0;
    }
    printf("文件打开成功,文件标识符是:%d\n",filename);
    char str[] = "hello";
    int len = write(filename,str,sizeof(str)-1);
    if(len < 0)
    {
        printf("文件写入失败\n");
        
    }
    else {
        printf("文件写入成功len=%d,%d\n",len,sizeof(str));
        
    }
    int tag = close(filename);
    if(tag < 0)
    {
        printf("文件关闭失败\n");
        
    }
    else
    {
        printf("文件关闭成功\n");
        
    }
    return 0;
}
read 读取
所需头
#include
函数
        ssize_t read(int fd, void *buf, size_t count);
参数:
        fd:文件描述符
        buf:内存首地址
        count:读取的字节个数
返回值:
        成功: 实际读取到的字节个数
        失败:-1
示例:
#include 
#include 
#include 
#include 
#include 
int main(int argc, char const *argv[])
{
    int fd_r = open("text.txt",O_RDONLY);//读文件
    if(fd_r < 0)
    {
        printf("文件打开失败\n");
        return 0;
    }
    printf("文件打开成功\n");
    char huange[] = "hello";
    int len = read(fd_r,huange,sizeof(huange)-1);
    if(len < 0)
    {
        printf("读取文件失败\n");
    }
    else{
        printf("读取文件成功len = %d,%d\n",len,sizeof(huange));
    }
    int tag = close(fd_r);
    if(tag < 0)
    {
        printf("文件关闭失败\n");
    }
    else{
        printf("文件关闭成功\n");
    }
    return 0;
}

示例 : 文件复制
示例:
#include 
#include 
#include 
#include 
#include 
int main(int argc, char const *argv[])
{
    int fd_r = open("text.txt",O_RDONLY);
    if(fd_r < 0)
    {
        printf("文件打开失败\n");
    }
    int fd_w = open("b.txt",O_WRONLY | O_CREAT | O_APPEND,0766);
    if(fd_w < 0)
    {
        printf("文件打开失败\n");
    }
    while(1)
    {
        char str[3] = "";
        int len1 = read(fd_r,str,sizeof(str));
        int len2 = write(fd_w,str,len1);
        if(len1 < sizeof(str))
        {
            break;
        }
    }
    int tag = close(fd_r);
    if(tag < 0)
    {
        printf("文件fd_r关闭失败\n");
    }
    int tag2 = close(fd_w);
    if(tag2 < 0)
    {
        printf("文件fd_w关闭失败\n");
    }
    return 0;
}

文件的阻塞特性
概述:
read 默认为阻塞。如果读不到数据,将阻塞不继续执行 知道有数据可读,才继续往下
执行。
非阻塞特性:如果没数据,立即返回,继续执行。
注意 : 阻塞与非阻塞是对于文件而言的 ,而不是指 read write 等的属性。
示例:
#include 
#include 
#include 
#include 
#include 
int main(int argc, char const *argv[])
{
    int filename  = open("/dev/tty",O_RDONLY | O_NONBLOCK);
    if(filename < 0)
    {
        printf("文件打开失败\n");
        return 0;
    }
    char str[] = "helo";
    // int len = read(filename,str,sizeof(str)-1);
    // if(len < 0)
    // {
    //     printf("文件读取成功,标识符是:%d\n",filename);
    // }
    // printf("文件读取成功,标识符是:%d\n",filename);
    printf("开始读取\n");
    read(filename,str,sizeof(str));
    printf("读取结束\n");
    return 0;
}

非阻塞状态:直接将程序执行完,不会等

阻塞状态(默认):如果读不到数据,将阻塞不继续执行 知道有数据可读,才继续往下执行。

问题:

通过 open 打开的文件可以设置非阻塞 , 但是如果不是通过 open 打开的文件怎么办 ?
通过 fcntl 函数来解决
fcntl 函数
        作用: 针对已经存在的文件描述符设置阻塞状态
所需头文件
        #include
        #include
函数 :
        int fcntl(int fd, int cmd, ... /* arg */);
功能 :
        改变已打开的文件性质,fcntl 针对描述符提供控制。
参数:
        fd:操作的文件描述符
        cmd:操作方式
        arg:针对 cmd 的值, fcntl 能够接受第三个参数 int arg
返回值:
        成功:返回某个其他值
        失败:-1
fcntl 函数有 5 种功能:
1) 复制一个现有的描述符( cmd=F_DUPFD
2) 获得/设置文件描述符标记 (cmd=F_GETFD F_SETFD)
3) 获得/设置文件状态标记 (cmd=F_GETFL F_SETFL)
4) 获得/设置异步 I/O 所有权 (cmd=F_GETOWN F_SETOWN)
5) 获得/设置记录锁 (cmd=FGETLK, F_SETLK F_SETLKW)
使用步骤
1, 获取文件状态标记
2, 将得到的文件状态标记设置为非阻塞
3, 将修改后的文件非阻塞状态标记 , 设置到当前文件描述符中
示例:
#include 
#include 
#include 
int main(int argc, char const *argv[])
{
//1,获取文件标记状态
int status = fcntl(0,F_GETFL);
//2修改状态为非阻塞状态
status = status | O_NONBLOCK;
//3,设置文件标记状态为非阻塞状态
fcntl(0,F_SETFL,status);
char buf[32]="";
printf("开始读取\n");
//0(标准输入设备scanf)
int len = read(0,buf,sizeof(buf));
printf("结束读取,读取到的内容为:%s\n",buf);
return 0;
}

文件状态

语法:

作用 :
        获取文件状态信息
所需头
        #include
        #include
        #include
函数
        int stat(const char *path, struct stat *buf);
        int lstat(const char *pathname, struct stat *buf);
参数
        1参 : 文件地址
        2参 : 保存文件信息的结构体
返回值
        0:成功
        -1:失败
stat lstat 的区别
        当文件是一个符号链接时
        lstat 返回的是该符号链接本身的信息 ,(链接)
        stat 返回的是该链接指向的文件的信息。(文件本身)
stat 结构体解释:
struct stat {
dev_t st_dev; //文件的设备编号
ino_t st_ino; //节点
mode_t st_mode; //文件的类型和存取的权限
nlink_t st_nlink; //连到该文件的硬连接数目,刚建立的文件值为 1
uid_t st_uid; //用户 ID
gid_t st_gid; //组 ID
dev_t st_rdev; //(设备类型)若此文件为设备文件,则为其设备编号
off_t st_size; //文件字节数(文件大小)
blksize_t st_blksize; //块大小(文件系统的 I/O 缓冲区大小)
blkcnt_t st_blocks; //块数
time_t st_atime; //最后一次访问时间
time_t st_mtime; //最后一次修改时间
time_t st_ctime; //最后一次改变时间(指属性)
};
stat 结构体 st_mode 属性
        一个由16 个字节组成 , 简称 16
        0~2其他人权限
        3~5所属组权限
        6~8所有者权限
        12~15文件类型
具体参考下图
Day02 Liunx高级程序设计2-文件IO_第1张图片
存储权限
S_ISUID 04000 set-user-ID bit
S_ISGID 02000 set-group-ID bit (see below)
S_ISVTX 01000 sticky bit (see below)
S_IRWXU 00700 owner has read, write, and execute permission
S_IRUSR 00400 owner has read permission
S_IWUSR 00200 owner has write permission
S_IXUSR 00100 owner has execute permission
S_IRWXG 00070 group has read, write, and execute permission
S_IRGRP 00040 group has read permission
S_IWGRP 00020 group has write permission
S_IXGRP 00010 group has execute permission
S_IRWXO 00007 others (not in group) have read, write, and execute permission
S_IROTH 00004 others have read permission
S_IWOTH 00002 others have write permission
S_IXOTH 00001 others have execute permission
示例:
#include 
#include 
#include 
#include 
#include 
int main(int argc, char const *argv[])
{
    struct stat st;
    stat("text.txt",&st);
    if(S_ISREG(st.st_mode))
    {
        printf("普通文件\n");
    }
    else if(S_ISDIR(st.st_mode))
    {
        printf("目录文件\n");
    }
    if((st.st_mode & S_IRUSR) == S_IRUSR)
    {
        printf("所有者可读权限\n");
    }
    if((st.st_mode & S_IWUSR) == S_IWUSR)
    {
        printf("所有者可写权限\n");
    }
    if((st.st_mode & S_IXUSR) == S_IXUSR)
    {
        printf("所有者可执行权限\n");
    }
    printf("文件大小:%d\n",st.st_size);
    return 0;
}

Day02 Liunx高级程序设计2-文件IO_第2张图片

目录操作

语法

打开目录:

作用 : 打开目录 opendir
所有头文件 :
        #include
        #include
函数 :
        DIR *opendir(const char *name);
参数:
        name:目录名
返回值:
        成功:返回指向该目录结构体指针(DIR *)
        失败:NULL
DIR: 中文名称句柄 , 其实就是目录的结构体指针
读取目录
作用 : 读取目录 readdir
所需头文件
        #include
函数
        struct dirent *readdir(DIR *dirp);
参数:
        dirp:read dir 的返回值
返回值:
        成功:目录结构体指针
        失败:NULL
注意 : 一次读取一个文件。
相关结果体
相关结构体说明:
struct dirent
{
        ino_t d_ino; // 此目录进入点的 inode
        off_t d_off; // 目录文件开头至此目录进入点的位移
        signed short int d_reclen; // d_name 的长度 , 不包含 NULL 字符
        unsigned char d_type; // d_type 所指的文件类型
        char d_name[256]; // 文件名
};
d_type 说明 :
        DT_BLK这是一个块设备。 ( 块设备如 : 磁盘 )
        DT_CHR这是一个字符设备。 ( 字符设备如 : 键盘 , 打印机 )
        DT_DIR这是一个目录。
        DT_FIFO这是一个命名管道( FIFO )。
        DT_LNK这是一个符号链接。
        DT_REG这是一个常规文件。
        DT_SOCK这是一个 UNIX 域套接字。
        DT_UNKNOWN文件类型未知。
关闭目录
作用 : 关闭目录 closedir
所需头文件
        #include
        #include
函数
        int closedir(DIR *dirp);
参数:
        dirp:opendir 返回的指针
返回值:
        成功:0
        失败:-1
示例 : 扫描文件目录
#include 
#include 
#include 
int main(int argc, char const *argv[])
{
DIR *dir = opendir("./");
if(dir == NULL)
{
printf("打开文件夹失败");
return 0;
}
while(1)
{
struct dirent * d = readdir(dir);
if (d == NULL)
{
break;
}
if (d->d_type == DT_DIR)
{
printf("%s是个文件夹\n",d->d_name);
}
else if(d->d_type == DT_REG)
{
printf("%s是个普通文件\n",d->d_name);
}
}
return 0;
}
Day02 Liunx高级程序设计2-文件IO_第3张图片
示例 2: 扫描文件目录
#include 
#include 
#include 
#include 
void blDIR(char *path)
{
    char filedir[256] = "";
    strcpy(filedir,path);
    DIR* dir = opendir(filedir);
    if(dir == NULL)
    {
        printf("文件夹打开失败\n");
        return;
    }
    while(1)
    {
        struct dirent*d = readdir(dir);
        if(d == NULL)
        {
            break;
        }
        if(d->d_type == DT_DIR && strcmp(d->d_name,".") != 0 && strcmp(d->d_name,"..")!=0)
        {
            printf("%s是个文件夹\n",d->d_name);
            strcat(filedir,"/");
            strcat(filedir,d->d_name);
            blDIR(filedir);
        }
        else if(d->d_type == DT_REG)
        {
            printf("%s是一个普通文件\n",d->d_name);
            return 0;
        }
    }
    closedir(dir);
}
int main(int argc, char const *argv[])
{
    blDIR("./");
    return 0;
}

你可能感兴趣的:(linux系统编程,系统编程)