本文仅供学习使用
本文参考:
B站:CLEAR_LAB
笔者带更新-运动学
课程主讲教师:
Prof. Wei Zhang
Recall that cross product is a special linear transformation.
For any ω ⃗ ∈ R 3 \vec{\omega}\in \mathbb{R} ^3 ω∈R3, there is a matrix ω ⃗ ~ ∈ R 3 × 3 \tilde{\vec{\omega}}\in \mathbb{R} ^{3\times 3} ω~∈R3×3 such that ω ⃗ × R ⃗ = ω ⃗ ~ R ⃗ \vec{\omega}\times \vec{R}=\tilde{\vec{\omega}}\vec{R} ω×R=ω~R
ω ⃗ = [ ω 1 ω 2 ω 3 ] ⟷ ω ⃗ ~ = [ 0 − ω 3 ω 2 ω 3 0 − ω 1 − ω 2 ω 1 0 ] \vec{\omega}=\left[ \begin{array}{c} \omega _1\\ \omega _2\\ \omega _3\\ \end{array} \right] \longleftrightarrow \tilde{\vec{\omega}}=\left[ \begin{matrix} 0& -\omega _3& \omega _2\\ \omega _3& 0& -\omega _1\\ -\omega _2& \omega _1& 0\\ \end{matrix} \right] ω= ω1ω2ω3 ⟷ω~= 0ω3−ω2−ω30ω1ω2−ω10
Note that a ⃗ ~ = − a ⃗ ~ T \tilde{\vec{a}}=-\tilde{\vec{a}}^{\mathrm{T}} a~=−a~T (called skew stmmetric)
ω ⃗ ~ \tilde{\vec{\omega}} ω~ is called a skew-symmetric matrix representation of the vector ω ⃗ \vec{\omega} ω
The set of skew-symmetric matrices in : s o ( n ) ≜ { S ∈ R n × n : S T = − S } so\left( n \right) \triangleq \left\{ S\in \mathbb{R} ^{n\times n}:S^{\mathrm{T}}=-S \right\} so(n)≜{S∈Rn×n:ST=−S}
We are interested in case n = 2 , 3 n=2,3 n=2,3
Rotation matrix ∈ S O ( 3 ) { R T R = E , det ( R ) = 1 } \in SO\left( 3 \right) \left\{ R^{\mathrm{T}}R=E,\det \left( R \right) =1 \right\} ∈SO(3){RTR=E,det(R)=1}
The discussion holds for any reference frame
For example, assume R = [ 1 0 0 0 0 − 1 0 1 0 ] = R o t ( x ^ , π 2 ) R=\left[ \begin{matrix} 1& 0& 0\\ 0& 0& -1\\ 0& 1& 0\\ \end{matrix} \right] =\mathrm{Rot}\left( \hat{x},\frac{\pi}{2} \right) R= 1000010−10 =Rot(x^,2π)
Consider a relation q = R p q=Rp q=Rp:
- Change reference frame interpretation : two frames { A } , { B } \left\{ A \right\} ,\left\{ B \right\} {A},{B} , one physical Point a a a
R R R : orientation of { B } \left\{ B \right\} {B} relative to { A } \left\{ A \right\} {A} : i.e. R = [ Q B A ] R=\left[ Q_{\mathrm{B}}^{A} \right] R=[QBA]
then : p = a B , q = a A , q = R p ⇒ a A = [ Q B A ] a B p=a^B,q=a^A,q=Rp\Rightarrow a^A=\left[ Q_{\mathrm{B}}^{A} \right] a^B p=aB,q=aA,q=Rp⇒aA=[QBA]aB- Rotation operator interpretation : one frame and two points
a → a ′ , p = a A , q = a ′ A ⇒ a ′ A = R a A a\rightarrow a^{\prime},p=a^A,q={a^{\prime}}^A\Rightarrow {a^{\prime}}^A=Ra^A a→a′,p=aA,q=a′A⇒a′A=RaAConsider the frame operation:
- Change of reference frame :
Have one “frame object”, two reference frames
Frame object { A } \left\{ A \right\} {A}, orientation in { O } \left\{ O \right\} {O} , is R A O , R A B R_{\mathrm{A}}^{O},R_{\mathrm{A}}^{B} RAO,RAB, ⇒ R A O = R B O R A B = R R A B \Rightarrow R_{\mathrm{A}}^{O}=R_{\mathrm{B}}^{O}R_{\mathrm{A}}^{B}=RR_{\mathrm{A}}^{B} ⇒RAO=RBORAB=RRAB- Rotation a frame : R ′ A = R R A {R^{\prime}}_A=RR_A R′A=RRA
two frame objects, one refrence frame
more precisely : R ′ A = R R A ⇒ R A ′ O = R R A O {R^{\prime}}_A=RR_A\Rightarrow R_{\mathrm{A}^{\prime}}^{O}=RR_{\mathrm{A}}^{O} R′A=RRA⇒RA′O=RRAO
[ Q ] [ Q ] T = E \left[ Q \right] \left[ Q \right] ^{\mathrm{T}}=E [Q][Q]T=E
[ Q 1 ] [ Q 2 ] ∈ S O ( 3 ) , i f [ Q 1 ] , [ Q 2 ] ∈ S O ( 3 ) \left[ Q_1 \right] \left[ Q_2 \right] \in SO\left( 3 \right) ,if\,\,\left[ Q_1 \right] ,\left[ Q_2 \right] \in SO\left( 3 \right) [Q1][Q2]∈SO(3),if[Q1],[Q2]∈SO(3): product of two rotation matrices is also a rotation matrix
p , q ∈ R 3 , ∥ [ Q ] R ⃗ p − [ Q ] R ⃗ q ∥ 2 = ∥ [ Q ] ( R ⃗ p − R ⃗ q ) ∥ 2 = ( R ⃗ p − R ⃗ q ) T [ Q ] T [ Q ] ( R ⃗ p − R ⃗ q ) = ∥ R ⃗ p − R ⃗ q ∥ 2 p,q\in \mathbb{R} ^3,\left\| \left[ Q \right] \vec{R}_p-\left[ Q \right] \vec{R}_{\mathrm{q}} \right\| ^2=\left\| \left[ Q \right] \left( \vec{R}_p-\vec{R}_{\mathrm{q}} \right) \right\| ^2=\left( \vec{R}_p-\vec{R}_{\mathrm{q}} \right) ^{\mathrm{T}}\left[ Q \right] ^{\mathrm{T}}\left[ Q \right] \left( \vec{R}_p-\vec{R}_{\mathrm{q}} \right) =\left\| \vec{R}_p-\vec{R}_{\mathrm{q}} \right\| ^2 p,q∈R3, [Q]Rp−[Q]Rq 2= [Q](Rp−Rq) 2=(Rp−Rq)T[Q]T[Q](Rp−Rq)= Rp−Rq 2
∥ R ⃗ p − R ⃗ q ∥ = ∥ [ Q ] R ⃗ p − [ Q ] R ⃗ q ∥ \left\| \vec{R}_p-\vec{R}_{\mathrm{q}} \right\| =\left\| \left[ Q \right] \vec{R}_p-\left[ Q \right] \vec{R}_{\mathrm{q}} \right\| Rp−Rq = [Q]Rp−[Q]Rq : rotation operator preserves distance
[ Q ] ( v ⃗ × w ⃗ ) = [ Q ] v ⃗ × [ Q ] w ⃗ \left[ Q \right] \left( \vec{v}\times \vec{w} \right) =\left[ Q \right] \vec{v}\times \left[ Q \right] \vec{w} [Q](v×w)=[Q]v×[Q]w
[ Q ] w ⃗ ~ [ Q ] T = [ Q ] w ⃗ ~ \left[ Q \right] \tilde{\vec{w}}\left[ Q \right] ^{\mathrm{T}}=\widetilde{\left[ Q \right] \vec{w}} [Q]w~[Q]T=[Q]w —— important
Consider two frames { A } \left\{ A \right\} {A} and { B } \left\{ B \right\} {B}, the actual numerical values of the operator R o t ( ω ^ , θ ) \mathrm{Rot}\left( \hat{\omega},\theta \right) Rot(ω^,θ) depend on both the reference frame to repersent ω ^ \hat{\omega} ω^ and the reference frame to represent the operator itself
Consider a rotation axis ω ^ \hat{\omega} ω^ (coordinate free vector), with { A } \left\{ A \right\} {A} - frame coordinate ω ^ A \hat{\omega}^A ω^A and { B } \left\{ B \right\} {B} - frame. We know ω ⃗ A = [ Q B A ] ω ⃗ B \vec{\omega}^A=\left[ Q_{\mathrm{B}}^{A} \right] \vec{\omega}^B ωA=[QBA]ωB
Let B R o t ( B ω ^ , θ ) ^B\mathrm{Rot}\left( ^B\hat{\omega},\theta \right) BRot(Bω^,θ) and A R o t ( A ω ^ , θ ) ^A\mathrm{Rot}\left( ^A\hat{\omega},\theta \right) ARot(Aω^,θ) be the two rotation matrices, representing the same rotation operatioon R o t ( ω ^ , θ ) \mathrm{Rot}\left( \hat{\omega},\theta \right) Rot(ω^,θ) in frames { A } \left\{ A \right\} {A} and { B } \left\{ B \right\} {B}
We have the relation : A R o t ( A ω ^ , θ ) = [ Q B A ] B R o t ( B ω ^ , θ ) [ Q A B ] ^A\mathrm{Rot}\left( ^A\hat{\omega},\theta \right) =\left[ Q_{\mathrm{B}}^{A} \right] ^B\mathrm{Rot}\left( ^B\hat{\omega},\theta \right) \left[ Q_{\mathrm{A}}^{B} \right] ARot(Aω^,θ)=[QBA]BRot(Bω^,θ)[QAB]
Approach 1 : two points p → p ′ ⇒ R ⃗ p ′ A = A R o t ( A ω ^ , θ ) R ⃗ p A p\rightarrow p^{\prime}\Rightarrow \vec{R}_{\mathrm{p}^{\prime}}^{A}=^A\mathrm{Rot}\left( ^A\hat{\omega},\theta \right) \vec{R}_{\mathrm{p}}^{A} p→p′⇒Rp′A=ARot(Aω^,θ)RpA
{ B } \left\{ B \right\} {B} - frame : R ⃗ p ′ B = B R o t ( B ω ^ , θ ) R ⃗ p B \vec{R}_{\mathrm{p}^{\prime}}^{B}=^B\mathrm{Rot}\left( ^B\hat{\omega},\theta \right) \vec{R}_{\mathrm{p}}^{B} Rp′B=BRot(Bω^,θ)RpB
⇒ [ Q B A ] R ⃗ p ′ B = [ Q B A ] B R o t ( B ω ^ , θ ) R ⃗ p B ⇒ R ⃗ p ′ A = [ Q B A ] B R o t ( B ω ^ , θ ) [ Q B A ] R ⃗ p A ⇒ A R o t ( A ω ^ , θ ) = [ Q B A ] B R o t ( B ω ^ , θ ) [ Q B A ] \Rightarrow \left[ Q_{\mathrm{B}}^{A} \right] \vec{R}_{\mathrm{p}^{\prime}}^{B}=\left[ Q_{\mathrm{B}}^{A} \right] ^B\mathrm{Rot}\left( ^B\hat{\omega},\theta \right) \vec{R}_{\mathrm{p}}^{B}\Rightarrow \vec{R}_{\mathrm{p}^{\prime}}^{A}=\left[ Q_{\mathrm{B}}^{A} \right] ^B\mathrm{Rot}\left( ^B\hat{\omega},\theta \right) \left[ Q_{\mathrm{B}}^{A} \right] \vec{R}_{\mathrm{p}}^{A}\Rightarrow ^A\mathrm{Rot}\left( ^A\hat{\omega},\theta \right) =\left[ Q_{\mathrm{B}}^{A} \right] ^B\mathrm{Rot}\left( ^B\hat{\omega},\theta \right) \left[ Q_{\mathrm{B}}^{A} \right] ⇒[QBA]Rp′B=[QBA]BRot(Bω^,θ)RpB⇒Rp′A=[QBA]BRot(Bω^,θ)[QBA]RpA⇒ARot(Aω^,θ)=[QBA]BRot(Bω^,θ)[QBA]
Approach 2 : for a ⃗ ∈ R 3 , a ⃗ ~ ∈ s o ( 3 ) , [ Q ] ∈ S O ( 3 ) \vec{a}\in \mathbb{R} ^3,\tilde{\vec{a}}\in so\left( 3 \right) ,\left[ Q \right] \in SO\left( 3 \right) a∈R3,a~∈so(3),[Q]∈SO(3)
⇒ [ Q ] a ⃗ ∈ R 3 , [ Q ] a ⃗ ~ = [ Q ] a ⃗ ~ [ Q ] T \Rightarrow \left[ Q \right] \vec{a}\in \mathbb{R} ^3,\widetilde{\left[ Q \right] \vec{a}}=\left[ Q \right] \tilde{\vec{a}}\left[ Q \right] ^{\mathrm{T}} ⇒[Q]a∈R3,[Q]a =[Q]a~[Q]T
R o t ( ω ⃗ A , θ ) = e ω ⃗ ~ A θ = e [ Q B A ] ω ⃗ B ~ θ = e [ Q B A ] ω ⃗ ~ B [ Q B A ] T θ = [ Q B A ] e ω ⃗ ~ B θ [ Q B A ] T ← e P A P − 1 = P e A P − 1 Rot\left( \vec{\omega}^A,\theta \right) =e^{\tilde{\vec{\omega}}^A\theta}=e^{\widetilde{\left[ Q_{\mathrm{B}}^{A} \right] \vec{\omega}^B}\theta}=e^{\left[ Q_{\mathrm{B}}^{A} \right] \tilde{\vec{\omega}}^B\left[ Q_{\mathrm{B}}^{A} \right] ^{\mathrm{T}}\theta}=\left[ Q_{\mathrm{B}}^{A} \right] e^{\tilde{\vec{\omega}}^B\theta}\left[ Q_{\mathrm{B}}^{A} \right] ^{\mathrm{T}}\gets e^{PAP^{-1}}=Pe^AP^{-1} Rot(ωA,θ)=eω~Aθ=e[QBA]ωB θ=e[QBA]ω~B[QBA]Tθ=[QBA]eω~Bθ[QBA]T←ePAP−1=PeAP−1
Recall: Every [ Q ] ∈ S O ( 3 ) \left[ Q \right] \in SO\left( 3 \right) [Q]∈SO(3) can be viewed as the state transition matrix associated with the rotation ODE(1). It maps the initial position to the current position(after the rotation motion)
We can obtain similar ODE characterization for [ T ] ∈ S E ( 3 ) \left[ T \right] \in SE\left( 3 \right) [T]∈SE(3) , which will lead to exponential coordinate of SE(3)
Recall : Theorem (Chasles): Every rigid body motion can be realized by a screw motion
Consider a point p p p undergoes a screw motion with screw axis S \mathcal{S} S and unit speed ( θ ˙ = 1 \dot{\theta}=1 θ˙=1). Let the cooresponding twist be V = θ ˙ S = ( ω ⃗ , v ⃗ ) \mathcal{V} =\dot{\theta}\mathcal{S} =\left( \vec{\omega},\vec{v} \right) V=θ˙S=(ω,v) . The motion can be described be the following ODE.
p ⃗ ˙ ( t ) = ω ⃗ × p ⃗ ( t ) + v ⃗ ⇒ [ p ⃗ ˙ ( t ) 0 ] = [ ω ⃗ ~ v ⃗ 0 0 ] [ p ⃗ ( t ) 1 ] \dot{\vec{p}}\left( t \right) =\vec{\omega}\times \vec{p}\left( t \right) +\vec{v}\Rightarrow \left[ \begin{array}{c} \dot{\vec{p}}\left( t \right)\\ 0\\ \end{array} \right] =\left[ \begin{matrix} \tilde{\vec{\omega}}& \vec{v}\\ 0& 0\\ \end{matrix} \right] \left[ \begin{array}{c} \vec{p}\left( t \right)\\ 1\\ \end{array} \right] p˙(t)=ω×p(t)+v⇒[p˙(t)0]=[ω~0v0][p(t)1]
Solution in homogeneous coordinate is :
[ p ⃗ ( t ) 1 ] = exp ( [ ω ⃗ ~ v ⃗ 0 0 ] t ) [ p ⃗ ( 0 ) 1 ] \left[ \begin{array}{c} \vec{p}\left( t \right)\\ 1\\ \end{array} \right] =\exp \left( \left[ \begin{matrix} \tilde{\vec{\omega}}& \vec{v}\\ 0& 0\\ \end{matrix} \right] t \right) \left[ \begin{array}{c} \vec{p}\left( 0 \right)\\ 1\\ \end{array} \right] [p(t)1]=exp([ω~0v0]t)[p(0)1]
For any twist V = ( ω ⃗ , v ⃗ ) \mathcal{V} =\left( \vec{\omega},\vec{v} \right) V=(ω,v), let [ V ] \left[ \mathcal{V} \right] [V] be its matrix representation of twist V \mathcal{V} V
[ V ] = [ ω ⃗ ~ v ⃗ 0 0 ] ∈ R 4 × 4 \left[ \mathcal{V} \right] =\left[ \begin{matrix} \tilde{\vec{\omega}}& \vec{v}\\ 0& 0\\ \end{matrix} \right] \in \mathbb{R} ^{4\times 4} [V]=[ω~0v0]∈R4×4
The abve definition also applies to a screw axis S = ( ω ⃗ , v ⃗ ) , [ S ] = [ ω ⃗ ~ v ⃗ 0 0 ] \mathcal{S} =\left( \vec{\omega},\vec{v} \right) ,\left[ \mathcal{S} \right] =\left[ \begin{matrix} \tilde{\vec{\omega}}& \vec{v}\\ 0& 0\\ \end{matrix} \right] S=(ω,v),[S]=[ω~0v0]
With this notation, the solution is [ p ⃗ ( t ) 1 ] = e [ S ] t [ p ⃗ ( 0 ) 1 ] \left[ \begin{array}{c} \vec{p}\left( t \right)\\ 1\\ \end{array} \right] =e^{\left[ \mathcal{S} \right] t}\left[ \begin{array}{c} \vec{p}\left( 0 \right)\\ 1\\ \end{array} \right] [p(t)1]=e[S]t[p(0)1]
Fact: e [ S ] t ∈ S E ( 3 ) e^{\left[ \mathcal{S} \right] t}\in SE\left( 3 \right) e[S]t∈SE(3) is always a valid homogeneous transformation matrix.
[ T ] = e [ S ] t = [ [ Q ] R ⃗ 0 1 ] \left[ T \right] =e^{\left[ \mathcal{S} \right] t}=\left[ \begin{matrix} \left[ Q \right]& \vec{R}\\ 0& 1\\ \end{matrix} \right] [T]=e[S]t=[[Q]0R1]
Fact: Any T ∈ S E ( 3 ) T\in SE\left( 3 \right) T∈SE(3) can be written as [ T ] = e [ S ] t \left[ T \right] =e^{\left[ \mathcal{S} \right] t} [T]=e[S]t, i.e. , it can be viewed as an operator that moves a point/frame along the screw axis S \mathcal{S} S at unit speed for time t t t
∀ ω ⃗ ∈ R 3 → ω ⃗ ~ ∈ s o ( 3 ) → e ω ⃗ ~ θ ∈ S O ( 3 ) ∀ S ∈ R 6 → [ S ] ∣ 4 × 4 = [ ω ⃗ ~ v ⃗ 0 0 ] ∈ s e ( 3 ) → e [ S ] θ ∈ S E ( 3 ) \forall \vec{\omega}\in \mathbb{R} ^3\rightarrow \tilde{\vec{\omega}}\in so\left( 3 \right) \rightarrow e^{\tilde{\vec{\omega}}\theta}\in SO\left( 3 \right) \\ \forall \mathcal{S} \in \mathbb{R} ^6\rightarrow \left. \left[ \mathcal{S} \right] \right|_{4\times 4}=\left[ \begin{matrix} \tilde{\vec{\omega}}& \vec{v}\\ 0& 0\\ \end{matrix} \right] \in se\left( 3 \right) \rightarrow e^{\left[ \mathcal{S} \right] \theta}\in SE\left( 3 \right) ∀ω∈R3→ω~∈so(3)→eω~θ∈SO(3)∀S∈R6→[S]∣4×4=[ω~0v0]∈se(3)→e[S]θ∈SE(3)
Similar to s o ( 3 ) so\left( 3 \right) so(3) , we can define s e ( 3 ) se\left( 3 \right) se(3) :
s e ( 3 ) = { ( ω ⃗ ~ , v ⃗ ) , ω ⃗ ~ ∈ s o ( 3 ) , v ⃗ ∈ R 3 } se\left( 3 \right) =\left\{ \left( \tilde{\vec{\omega}},\vec{v} \right) ,\tilde{\vec{\omega}}\in so\left( 3 \right) ,\vec{v}\in \mathbb{R} ^3 \right\} se(3)={(ω~,v),ω~∈so(3),v∈R3}
ODE for rigid motion under V = ( ω ⃗ , v ⃗ ) \mathcal{V} =\left( \vec{\omega},\vec{v} \right) V=(ω,v)
p ⃗ ˙ = v ⃗ + ω ⃗ × p ⃗ ⇒ [ p ⃗ ˙ 0 ] = [ ω ⃗ ~ v ⃗ 0 0 ] [ p ⃗ 1 ] ⇒ [ p ⃗ ˙ 0 ] = e [ V ] t [ p ⃗ 1 ] \dot{\vec{p}}=\vec{v}+\vec{\omega}\times \vec{p}\Rightarrow \left[ \begin{array}{c} \dot{\vec{p}}\\ 0\\ \end{array} \right] =\left[ \begin{matrix} \tilde{\vec{\omega}}& \vec{v}\\ 0& 0\\ \end{matrix} \right] \left[ \begin{array}{c} \vec{p}\\ 1\\ \end{array} \right] \Rightarrow \left[ \begin{array}{c} \dot{\vec{p}}\\ 0\\ \end{array} \right] =e^{\left[ \mathcal{V} \right] t}\left[ \begin{array}{c} \vec{p}\\ 1\\ \end{array} \right] p˙=v+ω×p⇒[p˙0]=[ω~0v0][p1]⇒[p˙0]=e[V]t[p1]
Consider “unit velocity” V = S \mathcal{V} =\mathcal{S} V=S, then time t t t means degree
if not unit speed : V = θ ˙ S \mathcal{V} =\dot{\theta}\mathcal{S} V=θ˙S
[ p ⃗ ′ 1 ] = [ T ] [ p ⃗ 1 ] \left[ \begin{array}{c} \vec{p}^{\prime}\\ 1\\ \end{array} \right] =\left[ T \right] \left[ \begin{array}{c} \vec{p}\\ 1\\ \end{array} \right] [p′1]=[T][p1] : “rotate” p ⃗ \vec{p} p about screw axis S \mathcal{S} S by θ \theta θ degree
[ T ] = e [ S ] θ \left[ T \right] =e^{\left[ \mathcal{S} \right] \theta} [T]=e[S]θ, two points : [ p ⃗ 1 ] → [ p ⃗ ′ 1 ] \left[ \begin{array}{c} \vec{p}\\ 1\\ \end{array} \right] \rightarrow \left[ \begin{array}{c} \vec{p}^{\prime}\\ 1\\ \end{array} \right] [p1]→[p′1] , more precisely : [ p ⃗ O ′ 1 ] = [ T O ] [ p ⃗ O 1 ] \left[ \begin{array}{c} {\vec{p}^O}^{\prime}\\ 1\\ \end{array} \right] =\left[ T^O \right] \left[ \begin{array}{c} \vec{p}^O\\ 1\\ \end{array} \right] [pO′1]=[TO][pO1]
For [ T ] ∈ S E ( 3 ) \left[ T \right] \in SE\left( 3 \right) [T]∈SE(3) config representative [ T B A ] \left[ T_{\mathrm{B}}^{A} \right] [TBA] : config of { B } \left\{ B \right\} {B} relative to { A } \left\{ A \right\} {A} —— [ p ⃗ A 1 ] = [ T B A ] [ p ⃗ B 1 ] \left[ \begin{array}{c} \vec{p}^A\\ 1\\ \end{array} \right] =\left[ T_{\mathrm{B}}^{A} \right] \left[ \begin{array}{c} \vec{p}^B\\ 1\\ \end{array} \right] [pA1]=[TBA][pB1]——same physical point but two different frames
[ T ] [ T A ] \left[ T \right] \left[ T_A \right] [T][TA] : “rotate” { A } \left\{ A \right\} {A}-frame about S \mathcal{S} S by θ \theta θ degree
Rigid-Body Operator in Different Frames
Expression of [ T ] \left[ T \right] [T] in another frame (other than { O } \left\{ O \right\} {O}):
[ T O ] ↔ [ T B O ] − 1 [ T O ] [ T B O ] \left[ T^O \right] \leftrightarrow \left[ T_{\mathrm{B}}^{O} \right] ^{-1}\left[ T^O \right] \left[ T_{\mathrm{B}}^{O} \right] [TO]↔[TBO]−1[TO][TBO]
Consider an arbitrary screw axis S \mathcal{S} S , suppose the axis has gone through a rigid transformation [ T ] = ( [ Q ] , R ⃗ ) \left[ T \right] =\left( \left[ Q \right] ,\vec{R} \right) [T]=([Q],R) and the resulting new screw axis is S ′ \mathcal{S} ^{\prime} S′ , then
S ′ = [ A d T ] S \mathcal{S} ^{\prime}=\left[ Ad_T \right] \mathcal{S} S′=[AdT]S
Let’s work an arbitrary frame { A } \left\{ A \right\} {A} (rigidly attached to the screw axis)
Let { B } \left\{ B \right\} {B} be the frame obtained be apply [ T ] \left[ T \right] [T] operation
the coordinate of S \mathcal{S} S in { A } \left\{ A \right\} {A} is the same as the coordinate of S ′ \mathcal{S} ^{\prime} S′ in { B } \left\{ B \right\} {B} : S A = S ′ B \mathcal{S} ^A={\mathcal{S} ^{\prime}}^B SA=S′B
We also know [ T B ] = [ T ] [ T A ] , [ T ] = [ T B A ] \left[ T_B \right] =\left[ T \right] \left[ T_{\mathrm{A}} \right] ,\left[ T \right] =\left[ T_{\mathrm{B}}^{A} \right] [TB]=[T][TA],[T]=[TBA]
Multiply [ X B A ] \left[ X_{\mathrm{B}}^{A} \right] [XBA] : ⇒ [ X B A ] S A = [ X B A ] S ′ B = S ′ A ⇒ S ′ A = [ X B A ] S A \Rightarrow \left[ X_{\mathrm{B}}^{A} \right] \mathcal{S} ^A=\left[ X_{\mathrm{B}}^{A} \right] {\mathcal{S} ^{\prime}}^B={\mathcal{S} ^{\prime}}^A\Rightarrow {\mathcal{S} ^{\prime}}^A=\left[ X_{\mathrm{B}}^{A} \right] \mathcal{S} ^A ⇒[XBA]SA=[XBA]S′B=S′A⇒S′A=[XBA]SA
[ X B A ] = [ [ Q B A ] 0 R ⃗ ~ B A [ Q B A ] [ Q B A ] ] = [ A d T ] \left[ X_{\mathrm{B}}^{A} \right] =\left[ \begin{matrix} \left[ Q_{\mathrm{B}}^{A} \right]& 0\\ \tilde{\vec{R}}_{\mathrm{B}}^{A}\left[ Q_{\mathrm{B}}^{A} \right]& \left[ Q_{\mathrm{B}}^{A} \right]\\ \end{matrix} \right] =\left[ Ad_T \right] [XBA]=[[QBA]R~BA[QBA]0[QBA]]=[AdT]
1
2
3
4
5
6
7
8
9