x = x ∥ + x ⊥ x ∥ = u ( ∥ x ∥ cos α ) = u u T x x ⊥ = x − x ∥ = x − u u T x \begin{aligned} \bold{x}&=\bold{x}_{\parallel}+\bold{x}_{\perp}\\ \bold{x}_{\parallel}&=\bold{u}(\Vert \bold{x} \Vert\cos\alpha)=\bold{uu}^T\bold{x}\\ \bold{x}_{\perp}&=\bold{x}-\bold{x}_{\parallel}=\bold{x}-\bold{uu}^T\bold{x} \end{aligned} xx∥x⊥=x∥+x⊥=u(∥x∥cosα)=uuTx=x−x∥=x−uuTx
平行部分不旋转:
x ∥ ′ = x ∥ \bold{x}'_{\parallel}=\bold{x}_{\parallel} x∥′=x∥
垂直部分在垂直于 u \bold{u} u向量的平面内经历一个平面旋转。如果我们建立这个平面的一个正交基 { e 1 , e 2 } \{\bold{e}_1,\bold{e}_2\} {e1,e2}:
e 1 = x ⊥ e 2 = u × x ⊥ = u × x \bold{e}_1=\bold{x}_{\perp}\\ \bold{e}_2=\bold{u}\times\bold{x}_{\perp}=\bold{u}\times\bold{x} e1=x⊥e2=u×x⊥=u×x
满足 ∥ e 1 ∥ = ∥ e 2 ∥ \Vert\bold{e}_1\Vert=\Vert\bold{e}_2\Vert ∥e1∥=∥e2∥, x ⊥ = e 1 ⋅ 1 + e 2 ⋅ 0 \bold{x}_{\perp}=\bold{e}_1\cdot 1+\bold{e}_2\cdot 0 x⊥=e1⋅1+e2⋅0 平面上的旋转角度 ϕ \phi ϕ
x ⊥ ′ = e 1 cos ϕ + e 2 sin ϕ = x ⊥ cos ϕ + ( u × x ) sin ϕ \begin{aligned} \bold{x}_{\perp}' &= \bold{e}_1 \cos\phi+\bold{e}_2\sin\phi\\ &= \bold{x}_{\perp}\cos\phi +(\bold{u}\times \bold{x})\sin\phi \end{aligned} x⊥′=e1cosϕ+e2sinϕ=x⊥cosϕ+(u×x)sinϕ
则
x ′ = x ∥ ′ + x ⊥ ′ = x ∥ + x ⊥ cos ϕ + ( u × x ) sin ϕ \begin{aligned} \bold{x}'&=\bold{x}_{\parallel}'+\bold{x}_{\perp}'\\ &=\bold{x}_{\parallel}+\bold{x}_{\perp}\cos\phi+(\bold{u}\times\bold{x})\sin\phi \end{aligned} x′=x∥′+x⊥′=x∥+x⊥cosϕ+(u×x)sinϕ
任意旋转都可以用一个旋转轴和一个旋转角来刻画。于是,我们可以使用一个向量,其方向与旋转轴一致,而长度等于旋转角。这种向量称为旋转向量(或轴角/角轴,Axis-Angle),只需一个三维向量即可描述旋转。同样,对于变换矩阵,我们使用一个旋转向量和一个平移向量即可表达一次变换。这时的变量维数正好是六维。
考虑某个用旋转矩阵 R \bold{R} R表示的旋转。假设旋转轴为一个单位长度的向量 n \bold{n} n,角度为 θ \theta θ,那么向量 θ n \theta \bold{n} θn也可以描述这个旋转。
从旋转向量到旋转矩阵的转换过程由罗德里格斯公式(Rodrigues’s Formula)表明,旋转向量其实就是特殊正交群的李代数,从李代数层面证明罗德里格斯公式。
R = cos θ I + ( 1 − cos θ ) n n T + sin θ n ∧ \bold{R} =\cos \theta \bold{I}+\left( 1-\cos \theta \right) \bold{n}\bold{n}^{T}+\sin \theta \bold{n}^{\wedge } R=cosθI+(1−cosθ)nnT+sinθn∧
t r ( R ) = cos θ t r ( I ) + ( 1 − cos θ ) t r ( n n T ) + sin θ t r ( n ∧ ) = 3 cos θ + 1 − cos θ + 0 = 2 cos θ + 1 \begin{aligned} {\rm tr}\left( \bold{R}\right) &=\cos \theta{\rm tr}(\bold{I})+(1-\cos\theta){\rm tr} (\bold{n}\bold{n}^T)+\sin\theta{\rm tr}(\bold{n}^{\wedge}) \\&=3\cos \theta +1-\cos \theta +0=2\cos \theta +1 \end{aligned} tr(R)=cosθtr(I)+(1−cosθ)tr(nnT)+sinθtr(n∧)=3cosθ+1−cosθ+0=2cosθ+1
因此
θ = arccos t r ( R ) − 1 2 \theta=\arccos \dfrac{\rm tr(\bold{R})-1}{2} θ=arccos2tr(R)−1
旋转轴上的向量在旋转之后不发生改变
R n = n \bold{Rn}=\bold{n} Rn=n
因此转轴 n \bold{n} n是旋转矩阵 R \bold{R} R特征值为1对应的特征向量。求解此方程,再归一化。
如果我们有两个复数 A = a + b i A=a+bi A=a+bi和 C = c + d i C=c+di C=c+di,接着构建 Q = A + C j Q=A+Cj Q=A+Cj并定义 k ≜ i j k\triangleq ij k≜ij则产生一个四元数空间 H \mathbb{H} H中的数:
Q = a + b i + c j + d k ∈ H Q=a+bi+cj+dk\in\mathbb{H} Q=a+bi+cj+dk∈H
其中 { a , b , c , d } ∈ R \{a,b,c,d\}\in\mathbb{R} {a,b,c,d}∈R, { i , j , k } \{i,j,k\} {i,j,k}是三个虚单位数:
i 2 = j 2 = k 2 = i j k = − 1 i^2=j^2=k^2=ijk=-1 i2=j2=k2=ijk=−1
并且由上式可以导出
i j = − j i = k , j k = − k j = i , k i = − i k = j ij=-ji=k,\quad jk=-kj=i,\quad ki=-ik=j ij=−ji=k,jk=−kj=i,ki=−ik=j
一个四元数也可以表示为标量+向量的形式:
Q = q w + q x i + q y j + q z k ⟺ Q = q w + q v Q=q_w+q_x i+q_y j+q_z k \iff Q=q_w+\bold{q}_v Q=qw+qxi+qyj+qzk⟺Q=qw+qv
其中 q w q_w qw代表实部, q v = q x i + q y j + q z k = ( q x , q y , q z ) \bold{q}_v=q_x i+q_y j+q_z k=(q_x,q_y,q_z) qv=qxi+qyj+qzk=(qx,qy,qz)作为虚部或向量部分
我们更多会将一个四元数 Q Q Q作为4维向量 q \bold{q} q
q ≜ [ q w q v ] = [ q w q x q y q z ] \bold{q}\triangleq\begin{bmatrix}q_w\\\bold{q}_v\end{bmatrix}=\begin{bmatrix}q_w\\q_x\\q_y\\q_z\end{bmatrix} q≜[qwqv]= qwqxqyqz
常规单位长度的复数 z = e i θ \bold{z}=e^{i\theta} z=eiθ可以编码2D平面上的旋转:使用复数乘法 x ′ = z ⋅ x \bold{x}'=\bold{z}\cdot\bold{x} x′=z⋅x
单位长度的扩展复数(四元数) q = e ( q x i + q y j + q z k ) θ / 2 \bold{q}=e^{(q_x i+q_y j+q_z k)\theta/2} q=e(qxi+qyj+qzk)θ/2可以编码3D空间中的旋转:使用双四元数乘法 x = q ⊗ x ⊗ q ∗ \bold{x}=\bold{q}\otimes\bold{x}\otimes\bold{q}^* x=q⊗x⊗q∗
q a ⊗ q b = ( s a + v a ) ⊗ ( s b + v b ) = s a s b + s a v b + s b v a + v a ⊗ v b \bold{q_a}\otimes\bold{q_b}=(s_a+\bold{v_a})\otimes(s_b+\bold{v_b})=s_as_b+s_a\bold{v_b}+s_b\bold{v_a}+\bold{v_a}\otimes\bold{v_b} qa⊗qb=(sa+va)⊗(sb+vb)=sasb+savb+sbva+va⊗vb
最后一项两个向量相乘根据虚部满足的关系:
{ i 2 = j 2 = k 2 = − 1 i j = k , j i = − k j k = i , k j = − i k i = j , i k = − j \begin{cases} \rm i^2=j^2=k^2=-1\\ \rm ij=k,ji=-k\\ \rm jk=i,kj=-i\\ \rm ki=j,ik=-j \end{cases} ⎩ ⎨ ⎧i2=j2=k2=−1ij=k,ji=−kjk=i,kj=−iki=j,ik=−j
第一个规则相同虚部相乘等价于向量点乘的相反数,后三条规则相异虚部相乘与与向量叉乘相同,则:
v a ⊗ v b = − v a T v b + v a × v b \bold{v}_a\otimes\bold{v}_b=-\bold{v}_a^T\bold{v}_b+\bold{v}_a\times\bold{v}_b va⊗vb=−vaTvb+va×vb
q a ⊗ q b = ( s a s b − v a T v b ) + s a v b + s b v a + v a × v b = [ s a s b − v a T v b s a v b + s b v a + v a × v b ] = [ s a − v a T v a s a I + v a ∧ ] [ s b v b ] = [ s b − v b T v b s b I − v b ∧ ] [ s a v a ] \begin{aligned} \bold{q}_a\otimes\bold{q}_b &=(s_as_b-\bold{v}_a^T\bold{v}_b)+s_a\bold{v}_b+s_b\bold{v}_a+\bold{v}_a\times\bold{v}_b\\ &=\begin{bmatrix} s_{a}s_{b}-\bold{v}_{a}^{T}\bold{v}_{b} \\ s_{a}\bold{v}_{b}+s_{b}\bold{v}_{a}+\bold{v}_a\times \bold{v}_b \end{bmatrix}\\ &=\begin{bmatrix} s_{a} & -\bold{v}_{a}^{T} \\ \bold{v}_{a} & s_a\bold{I}+\bold{v}_{a}^{\wedge} \end{bmatrix}\begin{bmatrix} s_{b} \\ \bold{v}_{b} \end{bmatrix}\\ &=\begin{bmatrix} s_{b} & -\bold{v}_{b}^{T} \\ \bold{v}_{b} & s_{b}\bold{I}-\bold{v}_{b}^{\wedge} \end{bmatrix}\begin{bmatrix} s_a \\ \bold{v}_a \end{bmatrix} \end{aligned} qa⊗qb=(sasb−vaTvb)+savb+sbva+va×vb=[sasb−vaTvbsavb+sbva+va×vb]=[sava−vaTsaI+va∧][sbvb]=[sbvb−vbTsbI−vb∧][sava]
四元数相乘满足结合律但不满足交换律:
q a ⊗ q b ≠ q b ⊗ q a ( q a ⊗ q b ) ⊗ q c = q a ⊗ ( q b ⊗ q c ) \begin{aligned} \bold{q}_a\otimes\bold{q}_b&\neq\bold{q}_b\otimes \bold{q}_a \\ (\bold{q}_a\otimes \bold{q}_b)\otimes\bold{q}_c&=\bold{q}_a\otimes(\bold{q}_b\otimes\bold{q}_c) \end{aligned} qa⊗qb(qa⊗qb)⊗qc=qb⊗qa=qa⊗(qb⊗qc)
设 q = [ s v ] \bold{q}=\begin{bmatrix}s \\ \bold{v}\end{bmatrix} q=[sv]定义如下的符号 [ ⋅ ] L [\cdot]_{L} [⋅]L和 [ ⋅ ] R [\cdot]_{R} [⋅]R为
[ q ] L = [ s − v T v s I + v ∧ ] [ q ] R = [ s − v T v s I − v ∧ ] \begin{aligned} \left[\bold{q}\right]_{L} &=\begin{bmatrix} s & -\bold{v}^{T} \\ \bold{v} & s\bold{I}+\bold{v}^{\wedge } \end{bmatrix} \\ \left[\bold{q}\right]_{R} &=\begin{bmatrix} s & -\bold{v}^{T} \\ \bold{v} & s\bold{I}-\bold{v}^{\wedge } \end{bmatrix} \end{aligned} [q]L[q]R=[sv−vTsI+v∧]=[sv−vTsI−v∧]
则
q a ⊗ q b = [ q a ] L q b = [ q b ] R q a \begin{aligned} \bold{q}_{a}\otimes\bold{q}_{b}=\left[\bold{q}_{a}\right]_{L}\bold{q}_{b}=\left[\bold{q}_{b}\right]_{R}\bold{q}_{a} \end{aligned} qa⊗qb=[qa]Lqb=[qb]Rqa
四元数的共轭就是把虚部取成相反数:
q a ∗ = s a − v a = [ s a − v a ] \begin{aligned} \bold{q}_a^*=s_a-\bold{v}_a=\begin{bmatrix}s_a\\-\bold{v}_a\end{bmatrix} \end{aligned} qa∗=sa−va=[sa−va]
四元数共轭与其本身相乘,会得到一个实四元数
q a ∗ ⊗ q a = q a ⊗ q a ∗ = [ s a 2 + v a T v a 0 ] \begin{aligned} \bold{q}_a^*\otimes\bold{q}_a=\bold{q}_a\otimes\bold{q}_a^*=\begin{bmatrix}s_a^2+\bold{v}_a^T\bold{v}_a\\ \bold{0} \end{bmatrix} \end{aligned} qa∗⊗qa=qa⊗qa∗=[sa2+vaTva0]
∥ q a ∥ = q a ⊗ q a ∗ = s a 2 + v a T v a = s a 2 + x a 2 + y a 2 + z a 2 \begin{aligned} \lVert \bold{q}_a \rVert=\sqrt{\bold{q}_a\otimes\bold{q}_a^*}=\sqrt{s_a^2+\bold{v}_a^T\bold{v}_a}=\sqrt{s_a^2+x_a^2+y_a^2+z_a^2} \end{aligned} ∥qa∥=qa⊗qa∗=sa2+vaTva=sa2+xa2+ya2+za2
可以验证,两个四元数乘积的模即模的乘积
∥ q a ⊗ q b ∥ = ∥ q a ∥ ∥ q b ∥ \begin{aligned} \lVert \bold{q}_a\otimes\bold{q}_b \rVert = \lVert \bold{q}_a\rVert \lVert \bold{q}_b\rVert \end{aligned} ∥qa⊗qb∥=∥qa∥∥qb∥
证明:
∥ q a ⊗ q b ∥ 2 = ( s a s b − v a T v b ) 2 + ( s a v b + s b v a + v a × v b ) T ( s a v b + s b v a + v a × v b ) = s a 2 s b 2 − 2 s a s b v a T v b + ( v a T v b ) 2 + s a 2 v b T v b + s b 2 v a T v a + ( v a × v b ) T ( v a × v b ) + s a s b v b T v a + s a s b v a T v b + s a v b T ( v a × v b ) ⏟ 0 + s b v a T ( v a × v b ) ⏟ 0 + s a ( v a × v b ) T v b ⏟ 0 + s b ( v a × v b ) T v a ⏟ 0 = s a 2 s b 2 + s a 2 v b T v b + s b 2 v a T v a + ( v a T v b ) 2 + ( v a × v b ) T = s a 2 s b 2 + s a 2 v b T v b + s b 2 v a T v a + ∥ v a ∥ 2 ∥ v b ∥ 2 cos 2 θ + ∥ v a ∥ 2 ∥ v b ∥ 2 sin 2 θ = s a 2 s b 2 + s a 2 v b T v b + s b 2 v a T v a + ∥ v a ∥ 2 ∥ v b ∥ 2 \begin{aligned} \lVert \bold{q}_{a}\otimes\bold{q}_{b}\rVert ^{2} =& \left( s_{a}s_{b}-\bold{v}_{a}^{T}\bold{v}_{b}\right) ^{2}+\left( s_a\bold{v}_{b}+s_b\bold{v}_a+\bold{v}_{a}\times \bold{v}_{b}\right) ^{T}\left( s_{a}\bold{v}_{b}+s_{b}\bold{v}_ a+\bold{v}_{a}\times \bold{v}_{b}\right) \\ =&s_{a}^{2}s_{b}^{2}-2s_{a}s_{b}\bold{v}_{a}^{T}\bold{v}_{b}+\left( \bold{v}_{a}^{T}\bold{v}_{b}\right) ^{2}+s_{a}^{2}\bold{v}_{b}^{T}\bold{v}_{b}+s_{b}^{2}\bold{v}_{a}^{T}\bold{v}_{a}+\left( \bold{v}_{a}\times \bold{v}_{b}\right) ^{T}\left( \bold{v}_{a}\times \bold{v}_{b}\right) +s_{a}s_{b}\bold{v}_{b}^{T}\bold{v}_{a}+s_{a}s_{b}\bold{v}_{a}^{T}\bold{v}_{b}\\ &+s_a\underbrace{\bold{v}_{b}^{T}\left( \bold{v}_{a}\times \bold{v}_b\right) }_{0}+s_b\underbrace{\bold{v}_{a}^{T}\left( \bold{v}_a\times \bold{v}_{b}\right) }_{0}+s_a\underbrace{\left( \bold{v}_{a}\times \bold{v}_{b}\right)^{T}\bold{v}_{b}}_{0}+s_b\underbrace{\left( \bold{v}_a\times \bold{v}_{b}\right) ^{T}\bold{v}_a}_{0} \\ =& s_{a}^{2}s_{b}^{2}+s_{a}^{2}\bold{v}_{b}^{T}\bold{v}_{b}+s_{b}^{2}\bold{v}_{a}^{T}\bold{v}_{a}+\left( \bold{v}_{a}^{T}\bold{v}_{b}\right) ^{2}+\left( \bold{v}_{a}\times \bold{v}_b\right) ^{T} \\ =& s_{a}^{2}s_{b}^{2}+s_{a}^{2}\bold{v}_{b}^{T}\bold{v}_{b}+s_{b}^{2}\bold{v}_{a}^{T}\bold{v}_{a}+\left\| \bold{v}_{a}\right\| ^{2}\left\| \bold{v}_{b}\right\| ^{2}\cos ^{2}\theta +\left\| \bold{v}_{a}\right\| ^{2}\left\| \bold{v}_{b}\right\| ^{2}\sin ^{2}\theta \\ =& s_{a}^{2}s_{b}^{2}+s_{a}^{2}\bold{v}_{b}^{T}\bold{v}_{b}+s_{b}^{2}\bold{v}_{a}^{T}\bold{v}_{a}+\left\| \bold{v}_{a}\right\| ^{2}\left\| \bold{v}_{b}\right\| ^{2} \end{aligned} ∥qa⊗qb∥2=====(sasb−vaTvb)2+(savb+sbva+va×vb)T(savb+sbva+va×vb)sa2sb2−2sasbvaTvb+(vaTvb)2+sa2vbTvb+sb2vaTva+(va×vb)T(va×vb)+sasbvbTva+sasbvaTvb+sa0 vbT(va×vb)+sb0 vaT(va×vb)+sa0 (va×vb)Tvb+sb0 (va×vb)Tvasa2sb2+sa2vbTvb+sb2vaTva+(vaTvb)2+(va×vb)Tsa2sb2+sa2vbTvb+sb2vaTva+∥va∥2∥vb∥2cos2θ+∥va∥2∥vb∥2sin2θsa2sb2+sa2vbTvb+sb2vaTva+∥va∥2∥vb∥2
且
∥ q a ∥ 2 ∥ q b ∥ 2 = ( s a 2 + v a T v a ) ( s b 2 + v b T v b ) = s a 2 s b 2 + s a 2 v b T v b + s b 2 v a T v a + v a T v a v b T v b = s a 2 s b 2 + s a 2 v b T v b + s b 2 v a T v a + ∥ v a ∥ 2 ∥ v b ∥ 2 \begin{aligned} \left\| \bold{q}_{a}\right\| ^{2}\left\| \bold{q}_{b}\right\| ^{2} &= \left( s_{a}^{2}+\bold{v}_{a}^{T}\bold{v}_{a}\right) \left( s_{b}^{2}+\bold{v}_{b}^{T}\bold{v}_{b}\right) \\ &=s_{a}^{2}s_{b}^{2}+s_{a}^{2}\bold{v}_{b}^{T}\bold{v}_{b}+s_{b}^{2}\bold{v}_{a}^{T}\bold{v}_{a}+\bold{v}_{a}^{T}\bold{v}_{a}\bold{v}_{b}^{T}\bold{v}_{b}\\ &= s_{a}^{2}s_{b}^{2}+s_{a}^{2}\bold{v}_{b}^{T}\bold{v}_{b}+s_{b}^{2}\bold{v}_{a}^{T}\bold{v}_{a}+\left\| \bold{v}_{a}\right\| ^{2}\left\| \bold{v}_{b}\right\| ^{2} \end{aligned} ∥qa∥2∥qb∥2=(sa2+vaTva)(sb2+vbTvb)=sa2sb2+sa2vbTvb+sb2vaTva+vaTvavbTvb=sa2sb2+sa2vbTvb+sb2vaTva+∥va∥2∥vb∥2
故
∥ q a ⊗ q b ∥ = ∥ q a ∥ ∥ q b ∥ \begin{aligned} \lVert \bold{q}_{a}\otimes\bold{q}_{b}\rVert= \left\| \bold{q}_{a}\right\| \left\| \bold{q}_{b}\right\| \end{aligned} ∥qa⊗qb∥=∥qa∥∥qb∥
四元数的逆为
q − 1 = q ∗ ∥ q ∥ 2 \begin{aligned} \bold{q}^{-1}=\dfrac{\bold{q}^*}{\lVert \bold{q} \rVert^2} \end{aligned} q−1=∥q∥2q∗
按此定义,四元数和自己的逆的乘积为实四元数1:
q ⊗ q − 1 = q − 1 ⊗ q = 1 \bold{q}\otimes\bold{q}^{-1}=\bold{q}^{-1}\otimes\bold{q}=1 q⊗q−1=q−1⊗q=1
乘积的逆具有与矩阵相似的性质:
( q a ⊗ q b ) − 1 = q b − 1 ⊗ q a − 1 \begin{aligned} (\bold{q}_a\otimes\bold{q}_b)^{-1}=\bold{q}^{-1}_b\otimes\bold{q}^{-1}_a \end{aligned} (qa⊗qb)−1=qb−1⊗qa−1
单位四元数总是可以表示成以下形式:
q = [ cos θ u sin θ ] \begin{aligned} \bold{q}=\begin{bmatrix} \cos\theta\\ \bold{u}\sin\theta \end{bmatrix} \end{aligned} q=[cosθusinθ]
其中 u \bold{u} u是单位向量。
[ p , q ] ≜ p ⊗ q − q ⊗ p = 2 p v × q v \begin{aligned} [\bold{p},\bold{q}]&\triangleq \bold{p}\otimes\bold{q}-\bold{q}\otimes\bold{p}\\ &=2\bold{p}_v\times\bold{q}_v \end{aligned} [p,q]≜p⊗q−q⊗p=2pv×qv
纯虚四元数相乘:
v a ⊗ v b = [ − v a T v b v a × v b ] v a ⊗ v a = − v a T v a = − ∥ v a ∥ 2 \begin{aligned} \bold{v}_{a}\otimes\bold{v}_{b} &=\begin{bmatrix} -\bold{v}_{a}^{T}\bold{v}_{b} \\ \bold{v}_a\times \bold{v}_b \end{bmatrix} \\ \bold{v}_a\otimes\bold{v}_a&=-\bold{v}_a^T\bold{v}_a=-\Vert\bold{v}_a\Vert^2 \end{aligned} va⊗vbva⊗va=[−vaTvbva×vb]=−vaTva=−∥va∥2
对于单位纯虚四元数
u ⊗ u = − 1 \begin{aligned} \bold{u}\otimes\bold{u}=-1 \end{aligned} u⊗u=−1
纯虚四元数的幂:
令 v = θ u \bold{v}=\theta\bold{u} v=θu, θ = ∥ v ∥ ∈ R \theta=\lVert \bold{v} \rVert\in\mathbb{R} θ=∥v∥∈R, u \bold{u} u是单位向量。
v 2 = − θ 2 , v 3 = − u θ 3 , v 4 = θ 4 , ⋯ \begin{aligned} \bold{v}^2=-\theta^2,\quad \bold{v}^3=-\bold{u}\theta^3,\quad \bold{v}^4=\theta^4,\quad \cdots \end{aligned} v2=−θ2,v3=−uθ3,v4=θ4,⋯
四元数的指数映射
exp ( q ) = ∑ k = 0 ∞ 1 k ! q k \begin{aligned} \exp(\bold{q})=\sum_{k=0}^{\infty}\dfrac{1}{k!}\bold{q}^k \end{aligned} exp(q)=k=0∑∞k!1qk
纯虚四元数 v = v x i + v y j + v z k \bold{v}=v_x{\rm i}+v_y{\rm j}+v_z{\rm k} v=vxi+vyj+vzk
exp ( v ) = ∑ k = 0 ∞ 1 k ! v k \begin{aligned} \exp{(\bold{v})}=\sum_{k=0}^{\infty}\dfrac{1}{k!}\bold{v}^k \end{aligned} exp(v)=k=0∑∞k!1vk
令 v = θ u \bold{v}=\theta\bold{u} v=θu, θ = ∥ v ∥ ∈ R \theta=\lVert \bold{v} \rVert\in\mathbb{R} θ=∥v∥∈R, u \bold{u} u是单位向量。
exp ( θ u ) = ( 1 − θ 2 2 ! + θ 4 4 ! + ⋯ ) + ( u θ − u θ 3 3 ! + u θ 5 5 ! + ⋯ ) = [ cos θ u sin θ ] ∥ exp ( u θ ) ∥ = cos θ 2 + sin θ 2 = 1 \begin{aligned} \exp(\theta\bold{u})=\left(1-\dfrac{\theta^2}{2!}+\dfrac{\theta^4}{4!}+\cdots\right)&+\left(\bold{u}\theta-\dfrac{\bold{u}\theta^3}{3!}+\dfrac{\bold{u}\theta^5}{5!}+\cdots\right)=\begin{bmatrix}\cos\theta\\\bold{u}\sin\theta\end{bmatrix}\\ \Vert\exp(\bold{u}\theta)\Vert&=\cos\theta^2+\sin\theta^2=1 \end{aligned} exp(θu)=(1−2!θ2+4!θ4+⋯)∥exp(uθ)∥+(uθ−3!uθ3+5!uθ5+⋯)=[cosθusinθ]=cosθ2+sinθ2=1
这是欧拉公式的拓展: exp ( i θ ) = cos θ + i sin θ , ∥ exp ( i θ ) ∥ = 1 \exp(i\theta)=\cos\theta+i\sin\theta,\quad\Vert\exp(i\theta)\Vert=1 exp(iθ)=cosθ+isinθ,∥exp(iθ)∥=1
四元数指数函数的共轭:
exp ( − v ) = ( exp ( v ) ) ∗ \exp(-\bold{v})=\left(\exp(\bold{v})\right)^* exp(−v)=(exp(v))∗
普通四元数的指数映射:
exp ( q ) = exp ( s + v ) = exp ( s ) exp ( v ) = exp ( s ) [ cos ∥ v ∥ v ∥ v ∥ sin ∥ v ∥ ] \exp(\bold{q})=\exp(s+\bold{v})=\exp(s)\exp(\bold{v})=\exp(s)\begin{bmatrix}\cos\Vert\bold{v}\Vert\\ \dfrac{\bold{v}}{\Vert\bold{v}\Vert}\sin\Vert\bold{v}\Vert\end{bmatrix} exp(q)=exp(s+v)=exp(s)exp(v)=exp(s)[cos∥v∥∥v∥vsin∥v∥]
上式成立的原因是标量乘法可交换 s v = v s s\bold{v}=\bold{v}s sv=vs
log q = log ( cos θ + u sin θ ) = log ( exp ( θ u ) ) = θ u = [ 0 θ u ] \begin{aligned} \log\bold{q}=\log(\cos\theta+\bold{u}\sin\theta)=\log\left(\exp(\theta\bold{u})\right)=\theta\bold{u}=\begin{bmatrix}0\\\theta\bold{u}\end{bmatrix} \end{aligned} logq=log(cosθ+usinθ)=log(exp(θu))=θu=[0θu]
其中
u = v ∥ v ∥ θ = arctan ( ∥ v ∥ , s ) \begin{aligned} \bold{u}&=\dfrac{\bold{v}}{\Vert\bold{v}\Vert} \\ \theta&=\arctan(\Vert\bold{v}\Vert,s) \end{aligned} uθ=∥v∥v=arctan(∥v∥,s)
log q = log ( ∥ q ∥ q ∥ q ∥ ) = log ( ∥ q ∥ ) + log ( q ∥ q ∥ ) = log ( ∥ q ∥ ) + θ u = [ log ( ∥ q ∥ ) θ u ] \begin{aligned} \log\bold{q}=\log\left(\Vert\bold{q}\Vert\dfrac{\bold{q}}{\Vert\bold{q}\Vert}\right)=\log\left(\Vert\bold{q}\Vert\right)+\log\left(\dfrac{\bold{q}}{\Vert\bold{q}\Vert}\right)=\log\left(\Vert\bold{q}\Vert\right)+\theta\bold{u}=\begin{bmatrix}\log\left(\Vert\bold{q}\Vert\right)\\\theta\bold{u}\end{bmatrix} \end{aligned} logq=log(∥q∥∥q∥q)=log(∥q∥)+log(∥q∥q)=log(∥q∥)+θu=[log(∥q∥)θu]
Exponential forms of the type of q t \bold{q}^t qt:
q t = exp ( log ( q t ) ) = exp ( t log ( q ) ) = exp ( t ⋅ θ u ) = [ cos t θ u sin t θ ] \bold{q}^t=\exp\left(\log\left(\bold{q}^t\right)\right)=\exp\left(t\log\left(\bold{q}\right)\right)=\exp\left(t\cdot\theta \bold{u}\right)=\begin{bmatrix}\cos t\theta\\\bold{u}\sin t\theta\end{bmatrix} qt=exp(log(qt))=exp(tlog(q))=exp(t⋅θu)=[costθusintθ]
假设有一个空间三维点 p = [ x , y , z ] ∈ R 3 \bold{p}=[x,y,z]\in\mathbb{R}^3 p=[x,y,z]∈R3,以及一个由单位四元数 q \bold{q} q指定的旋转。
首先,把三维空间点用一个虚四元数来描述:
p = [ 0 , x , y , z ] T = [ 0 , v ] T \bold{p}=[0,x,y,z]^T=[0,\bold{v}]^T p=[0,x,y,z]T=[0,v]T
相当于把四元数的三个虚部与空间中的三个轴相对应。那么,旋转后的点 p ′ \bold{p}{'} p′可以表示为这样的乘积:
r ( p ) = p ′ = q ⊗ p ⊗ q − 1 \begin{aligned} r(\bold{p})=\bold{p}'=\bold{q}\otimes\bold{p}\otimes\bold{q}^{-1} \end{aligned} r(p)=p′=q⊗p⊗q−1
可以验证结果的实部为0。最后把 p ′ \bold{p}{'} p′的虚部取出即得旋转之后点的坐标。
由四元数括号可知:
r ( v ) × r ( w ) = ( q ⊗ v ⊗ q ∗ ) × ( q ⊗ w ⊗ q ∗ ) = 1 2 ( ( q ⊗ v ⊗ q ∗ ) ⊗ ( q ⊗ w ⊗ q ∗ ) − ( q ⊗ w ⊗ q ∗ ) ⊗ ( q ⊗ v ⊗ q ∗ ) ) = 1 2 ( q ⊗ v ⊗ w ⊗ q ∗ − q ⊗ w ⊗ v ⊗ q ∗ ) = 1 2 ( q ⊗ ( v ⊗ w − w ⊗ v ) ⊗ q ∗ ) = q ⊗ ( v × w ) ⊗ q ∗ = r ( v × w ) \begin{aligned}r\left( \bold{v}\right) \times r\left( \bold{w}\right) &=\left( \bold{q}\otimes \bold{v}\otimes \bold{q}^{\ast }\right) \times \left( \bold{q}\otimes \bold{w}\otimes \bold{q}^{\ast }\right) \\ &=\dfrac{1}{2}\left( \left( \bold{q}\otimes \bold{v}\otimes \bold{q}^{\ast }\right) \otimes \left( \bold{q}\otimes \bold{w}\otimes \bold{q}^{\ast }\right) -\left( \bold{q}\otimes \bold{w}\otimes \bold{q}^{\ast }\right) \otimes \left( \bold{q}\otimes \bold{v}\otimes \bold{q}^{\ast }\right) \right) \\ &=\dfrac{1}{2}\left( \bold{q}\otimes \bold{v}\otimes \bold{w}\otimes \bold{q}^{\ast }-\bold{q}\otimes \bold{w}\otimes \bold{v}\otimes \bold{q}^{\ast }\right) \\ &=\dfrac{1}{2}\left( \bold{q}\otimes \left( \bold{v}\otimes \bold{w}-\bold{w}\otimes \bold{v}\right) \otimes \bold{q}^{\ast }\right) \\ &=\bold{q}\otimes \left( \bold{v}\times \bold{w}\right) \otimes \bold{q}^{\ast }\\ &=r\left( \bold{v}\times \bold{w}\right) \end{aligned} r(v)×r(w)=(q⊗v⊗q∗)×(q⊗w⊗q∗)=21((q⊗v⊗q∗)⊗(q⊗w⊗q∗)−(q⊗w⊗q∗)⊗(q⊗v⊗q∗))=21(q⊗v⊗w⊗q∗−q⊗w⊗v⊗q∗)=21(q⊗(v⊗w−w⊗v)⊗q∗)=q⊗(v×w)⊗q∗=r(v×w)
一个单位四元数 q ∈ S 3 \bold{q}\in S^3 q∈S3,满足 q ∗ ⊗ q = 1 \bold{q}^{\ast}\otimes\bold{q}=1 q∗⊗q=1,像对旋转矩阵的处理一样, R T R = I \bold{R}^T\bold{R}=\bold{I} RTR=I
d ( q ∗ ⊗ q ) d t = q ˙ ∗ ⊗ q + q ∗ ⊗ q ˙ = 0 \dfrac{\rm d\left( \bold{q}^{\ast }\otimes \bold{q}\right) }{{\rm d}t}=\dot{\bold{q}}^{\ast }\otimes \bold{q}+\bold{q}^{\ast }\otimes \dot{\bold{q}}=0 dtd(q∗⊗q)=q˙∗⊗q+q∗⊗q˙=0
可以推得
q ∗ ⊗ q ˙ = − ( q ˙ ∗ ⊗ q ) = − ( q ∗ ⊗ q ˙ ) ∗ \bold{q}^{\ast }\otimes \dot{\bold{q}}=-\left( \dot{\bold{q}}^{\ast }\otimes \bold{q}\right) =-\left( \bold{q}^{\ast }\otimes \dot{\bold{q}}\right) ^{\ast } q∗⊗q˙=−(q˙∗⊗q)=−(q∗⊗q˙)∗
这意味着 q ∗ ⊗ q ˙ \bold{q}^{\ast }\otimes \dot{\bold{q}} q∗⊗q˙是一个纯虚四元数。设一个纯虚四元数 Ω ∈ H p \bold{\Omega}\in \mathbb{H}_p Ω∈Hp满足
q ∗ ⊗ q ˙ = Ω = [ 0 Ω ] \bold{q}^{\ast }\otimes \dot{\bold{q}}=\bold{\Omega}=\begin{bmatrix} 0 \\ \bold{\Omega} \end{bmatrix} q∗⊗q˙=Ω=[0Ω]
等式两侧左乘一个 q \bold{q} q可得
q ˙ = q ⊗ Ω \dot{\bold{q}}=\bold{q}\otimes \bold{\Omega} q˙=q⊗Ω
在原点附近,我们有 q = 1 \bold{q}=1 q=1,上面的方程退化为 q ˙ = Ω ∈ H p \dot{\bold{q}}=\bold{\Omega}\in \mathbb{H}_p q˙=Ω∈Hp 因此,纯虚四元数空间 H p \mathbb{H}_p Hp构成了四元数单位球 S 3 S^3 S3的切向量或李代数。然而,在四元数的情况下,这个空间不是直接的速度空间,而是半-速度空间。
如果 Ω \bold{\Omega} Ω为常数,微分方程可积分为
q = q ( 0 ) ⊗ e Ω t \bold{q}=\bold{q}(0)\otimes e^{\bold{\Omega}t} q=q(0)⊗eΩt
其中 q ( 0 ) \bold{q}(0) q(0)和 q ( t ) \bold{q}(t) q(t)都是单位四元数,所以指数 e Ω t e^{\bold{\Omega}t} eΩt也是单位四元数,这在之前四元数的指数映射一节也已经推导过了。
定义 V = Ω t \bold{V}=\bold{\Omega}t V=Ωt,我们有
q = e V \bold{q}=e^{\bold{V}} q=eV
这又是一个指数映射:从纯四元数空间到由单位四元数表示的旋转空间:
exp : H p → S 3 ; V ↦ exp ( V ) = e V \exp: \mathbb{H}_{p}\to S^3;\bold{V}\mapsto\exp(\bold{V})=e^{\bold{V}} exp:Hp→S3;V↦exp(V)=eV
考虑使用单位四元数对空间点进行旋转的问题,有
p ′ = q ⊗ p ⊗ q ∗ = [ q ] L ( p ⊗ q ∗ ) = [ q ] L [ q ∗ ] R p = ( q ⊗ p ) ⊗ q ∗ = [ q ] L p ⊗ q ∗ = [ q ∗ ] R [ q ] L p \begin{aligned} \bold{p}'&=\bold{q}\otimes\bold{p}\otimes\bold{q}^{\ast}=\left[\bold{q}\right]_{L}\left( \bold{p}\otimes\bold{q}^{\ast}\right) =\left[\bold{q}\right]_{L}\left[ \bold{q}^{\ast}\right] _{R} \bold{p}\\ &=\left(\bold{q}\otimes \bold{p}\right)\otimes\bold{q}^{\ast}=\left[\bold{q}\right]_{L}\bold{p}\otimes\bold{q}^{\ast}=\left[ \bold{q}^{\ast}\right] _{R}\left[ \bold{q}\right] _{L}\bold{p} \end{aligned} p′=q⊗p⊗q∗=[q]L(p⊗q∗)=[q]L[q∗]Rp=(q⊗p)⊗q∗=[q]Lp⊗q∗=[q∗]R[q]Lp
上式我们只利用了四元数乘法的结合律,可以得到对任意四元数都成立的如下关系式
[ q 1 ] R [ q 2 ] L = [ q 2 ] L [ q 1 ] R \left[ \bold{q}_1\right] _{R}\left[ \bold{q}_2\right] _{L}=\left[ \bold{q}_2\right] _{L}\left[ \bold{q}_1\right] _{R} [q1]R[q2]L=[q2]L[q1]R
代入两个符号对应的矩阵,得四元数乘法矩阵形式:
[ q ] L [ q ∗ ] R = [ s − v T v s I + v ∧ ] [ s v T − v s I + v ∧ ] = [ s 2 + v T v s v T − s v T − v T v ∧ s v − s v − v ∧ v v v T + ( s I + v ∧ ) 2 ] = [ 1 0 0 v v T + s 2 I + 2 s v ∧ + ( v ∧ ) 2 ] \begin{aligned} [\bold{q}]_{L}\left[ \bold{q}^{\ast}\right]_{R} &=\begin{bmatrix} s & -\bold{v}^{T} \\ \bold{v} & s\bold{I}+\bold{v}^{\wedge } \end{bmatrix}\begin{bmatrix} s & \bold{v}^{T} \\ -\bold{v} & s\bold{I}+\bold{v}^{\wedge } \end{bmatrix} \\ &=\begin{bmatrix} s^{2}+\bold{v}^{T}\bold{v} & s\bold{v}^{T}-s\bold{v}^{T}-\bold{v}^{T}\bold{v}^{\wedge} \\ s\bold{v}-s\bold{v}-\bold{v}^{\wedge }\bold{v} & \bold{v}\bold{v}^{T}+\left( s\bold{I}+\bold{v}^{\wedge}\right) ^{2} \end{bmatrix}\\ &=\begin{bmatrix} 1 & 0 \\ 0 & \bold{v}\bold{v}^{T}+s^{2}\bold{I}+2s\bold{v}^{\wedge }+\left( \bold{v}^{\wedge }\right) ^{2} \end{bmatrix} \end{aligned} [q]L[q∗]R=[sv−vTsI+v∧][s−vvTsI+v∧]=[s2+vTvsv−sv−v∧vsvT−svT−vTv∧vvT+(sI+v∧)2]=[100vvT+s2I+2sv∧+(v∧)2]
因为 p ′ \bold{p}' p′和 p \bold{p} p都是虚四元数,所以事实上该矩阵的右下角给出了从四元数到旋转矩阵的变换关系:
R = v v T + s 2 I + ( v ∧ ) 2 + 2 s v ∧ \begin{aligned} \bold{R}=\bold{v}\bold{v}^{T}+s^{2}\bold{I}+\left( \bold{v}^{\wedge}\right) ^{2}+2s\bold{v}^{\wedge } \end{aligned} R=vvT+s2I+(v∧)2+2sv∧
观察到前三项均为对称矩阵,最后一项为反对称矩阵,利用这个性质可以得到:
R − R T = 4 s v ∧ \begin{aligned} \bold{R}-\bold{R}^{T}=4s\bold{v}^{\wedge} \end{aligned} R−RT=4sv∧
由下式求出 s s s进而求出 v \bold{v} v
t r ( R ) = t r ( v v T ) + t r ( s 2 I ) + t r ( ( v ∧ ) 2 ) + t r ( 2 s v ∧ ) = t r ( v T v ) + 3 s 2 − 2 ( v 1 2 + v 2 2 + v 3 2 ) + 0 = v 1 2 + v 2 2 + v 3 2 + 3 s 2 − 2 ( v 1 2 + v 2 2 + v 3 2 ) = 3 s 2 − ( v 1 2 + v 2 2 + v 3 2 ) = 3 s 2 − ( 1 − s 2 ) = 4 s 2 − 1 \begin{aligned} {\rm tr}\left( \bold{R}\right) &={\rm tr}\left( \bold{v}\bold{v}^{T}\right) +{\rm tr}\left( s^{2}\bold{I}\right) +{\rm tr}\left( \left( \bold{v}^{\wedge}\right) ^{2}\right) +{\rm tr}\left( 2s\bold{v}^{\wedge}\right) \\ &={\rm tr}\left( \bold{v}^{T}\bold{v}\right) +3s^{2}-2\left( v_{1}^{2}+v_{2}^{2}+v_{3}^{2}\right) +0\\ &=v_{1}^{2}+v_{2}^{2}+v_{3}^{2}+3s^{2}-2\left( v_{1}^{2}+v_{2}^{2}+v_{3}^{2}\right) \\ &=3s^{2}-\left( v_{1}^{2}+v_{2}^{2}+v_3^{2}\right) \\ &=3s^{2}-\left( 1-s^{2}\right) \\ &=4s^{2}-1 \end{aligned} tr(R)=tr(vvT)+tr(s2I)+tr((v∧)2)+tr(2sv∧)=tr(vTv)+3s2−2(v12+v22+v32)+0=v12+v22+v32+3s2−2(v12+v22+v32)=3s2−(v12+v22+v32)=3s2−(1−s2)=4s2−1
可以得出四元数转旋转矩阵有这样的性质:
R { [ 1 , 0 , 0 , 0 ] T } = I R { − q } = R { q } R { q ∗ } = R { q } T R { q 1 ⊗ q 2 } = R { q 1 } ⊗ R { q 2 } \begin{aligned}\bold{R}\left\{ \left[ 1,0,0,0\right] ^{T}\right\} &=\bold{I}\\ \bold{R}\left\{ -\bold{q}\right\} &=\bold{R}\left\{ \bold{q}\right\} \\ \bold{R}\left\{ \bold{q}^{\ast }\right\} &=\bold{R}\left\{ \bold{q}\right\} ^{T}\\ \bold{R} \left\{ \bold{q}_1\otimes\bold{q}_{2}\right\} &=\bold{R} \left\{ \bold{q}_{1}\right\} \otimes \bold{R} \left\{ \bold{q}_{2}\right\} \end{aligned} R{[1,0,0,0]T}R{−q}R{q∗}R{q1⊗q2}=I=R{q}=R{q}T=R{q1}⊗R{q2}
由旋转向量的旋转角与旋转矩阵的转换关系可得:
θ = arccos ( t r ( R ) − 1 2 ) = arccos ( 2 s 2 − 1 ) cos θ = 2 s 2 − 1 = 2 cos 2 θ 2 − 1 ⟹ θ = 2 arccos s \begin{aligned} &\theta =\arccos \left( \dfrac{{\rm tr}\left( \bold{R}\right) -1}{2}\right) =\arccos \left( 2s^{2}-1\right) \\ &\cos \theta =2s^{2}-1=2\cos ^{2}\dfrac{\theta }{2}-1\\ &\implies \theta =2\arccos s \end{aligned} θ=arccos(2tr(R)−1)=arccos(2s2−1)cosθ=2s2−1=2cos22θ−1⟹θ=2arccoss
R = v v T + s 2 I + 2 s v ∧ + ( v ∧ ) 2 ⟹ t r ( R ) = t r ( v T v ) + 3 s 2 + 0 − 2 v T v = 4 s 2 − 1 R = cos θ I + ( 1 − cos θ ) n n T + sin θ n ∧ ⟹ t r ( R ) = 3 cos θ + 1 − cos θ + 0 = 2 cos θ + 1 \begin{aligned} \bold{R}=\bold{v}\bold{v}^{T}+s^{2}I+2s\bold{v}^{\wedge }+\left( \bold{v}^{\wedge}\right) ^{2}&\implies {\rm tr}\left( \bold{R}\right) ={\rm tr}\left( \bold{v}^{T}\bold{v}\right) +3s^{2}+0-2\bold{v}^{T}\bold{v}=4s^{2}-1 \\ \bold{R}=\cos \theta I+\left( 1-\cos \theta \right) nn^{T}+\sin \theta n^{\wedge } &\implies {\rm tr}\left( \bold{R}\right) =3\cos \theta +1-\cos \theta +0=2\cos \theta +1 \end{aligned} R=vvT+s2I+2sv∧+(v∧)2R=cosθI+(1−cosθ)nnT+sinθn∧⟹tr(R)=tr(vTv)+3s2+0−2vTv=4s2−1⟹tr(R)=3cosθ+1−cosθ+0=2cosθ+1
cos θ = 2 s 2 − 1 = 2 cos 2 θ 2 − 1 ⇒ s 2 = cos 2 θ 2 \cos \theta =2s^{2}-1=2\cos ^{2}\dfrac{\theta }{2}-1\Rightarrow s^{2}=\cos ^{2}\dfrac{\theta }{2} cosθ=2s2−1=2cos22θ−1⇒s2=cos22θ
至于旋转轴,将四元数乘法矩阵形式中的 p \bold{p} p用 q \bold{q} q的虚部代替,易知 q \bold{q} q的虚部组成的向量在旋转时是不变的,即构成旋转轴。
n = v k ( k 2 = ∣ v ∣ 2 = 1 − s 2 = sin 2 θ 2 ) \begin{aligned} \bold{n}=\dfrac{\bold{v}}{k}\quad(k^2=|\bold{v}|^2=1-s^2=\sin^2\frac{\theta}{2}) \end{aligned} n=kv(k2=∣v∣2=1−s2=sin22θ)
将上面两式代入旋转向量与旋转矩阵的转换式,得
R = cos θ I + ( 1 − cos θ ) n n T + sin θ n ∧ = ( 2 s 2 − 1 ) I + 2 ( 1 − s 2 ) v v T 1 − s 2 + sin θ n ∧ = ( 2 s 2 − 1 ) I + 2 v v T + sin θ n ∧ = v v T + s 2 I + [ v v T − ( 1 − s 2 ) I ] + sin θ n ∧ = v v T + s 2 I + ( v ∧ ) 2 + sin θ n ∧ ⟹ 2 s v ∧ = sin θ n ∧ = 2 cos θ 2 sin θ 2 n ∧ ⟹ s cos θ 2 v ∧ = sin θ 2 k v ∧ \begin{aligned} \bold{R} =& \cos \theta \bold{I}+\left( 1-\cos \theta \right) \bold{n}\bold{n}^{T}+\sin \theta \bold{n}^{\wedge } \\ =& \left( 2s^{2}-1\right) \bold{I}+2\left( 1-s^{2}\right) \dfrac{\bold{v}\bold{v}^{T}}{1-s^{2}}+\sin \theta \bold{n}^{\wedge }\\ =& \left( 2s^{2}-1\right) \bold{I}+2\bold{v}\bold{v}^{T}+\sin \theta \bold{n}^{\wedge }\\ =& \bold{v}\bold{v}^{T}+s^{2}\bold{I}+\left[ \bold{v}\bold{v}^{T}-\left( 1-s^{2}\right) \bold{I}\right] +\sin \theta \bold{n}^{\wedge }\\ =& \bold{v}\bold{v}^{T}+s^{2}\bold{I}+\left( \bold{v}^{\wedge}\right) ^{2}+\sin \theta \bold{n}^{\wedge } \\ \implies & 2s\bold{v}^{\wedge }=\sin \theta \bold{n}^{\wedge }=2\cos \tfrac{\theta }{2}\sin \tfrac{\theta }{2}\bold{n}^{\wedge }\\ \implies& \dfrac{s}{\cos \frac{\theta }{2}}\bold{v}^{\wedge }=\dfrac{\sin \frac{\theta }{2}}{k}\bold{v}^{\wedge} \end{aligned} R=====⟹⟹cosθI+(1−cosθ)nnT+sinθn∧(2s2−1)I+2(1−s2)1−s2vvT+sinθn∧(2s2−1)I+2vvT+sinθn∧vvT+s2I+[vvT−(1−s2)I]+sinθn∧vvT+s2I+(v∧)2+sinθn∧2sv∧=sinθn∧=2cos2θsin2θn∧cos2θsv∧=ksin2θv∧有两种对应关系:
s = cos θ 2 k = sin θ 2 o r s = − cos θ 2 k = − sin θ 2 \begin{aligned} s&=\cos\frac{\theta}{2}\\ k&=\sin\frac{\theta}{2} \end{aligned} \quad \rm or \quad \begin{aligned} s&=-\cos\frac{\theta}{2}\\ k&=-\sin\frac{\theta}{2} \end{aligned} sk=cos2θ=sin2θorsk=−cos2θ=−sin2θ
通常取
s = cos θ 2 k = sin θ 2 \begin{aligned} s &=\cos\frac{\theta}{2}\\ k &=\sin\frac{\theta}{2} \end{aligned} sk=cos2θ=sin2θ
则旋转向量转四元数:
s = cos θ 2 v = n sin θ 2 \begin{aligned} s &=\cos\tfrac{\theta}{2}\\ \bold{v} &=\bold{n}\sin\tfrac{\theta}{2} \end{aligned} sv=cos2θ=nsin2θ
四元数转旋转向量:
θ = 2 arccos s n = v sin θ 2 \begin{aligned} \theta &=2\arccos s\\ \bold{n} &=\dfrac{\bold{v}}{\sin\tfrac{\theta}{2}} \end{aligned} θn=2arccoss=sin2θv
对于半-速度空间的一个通俗的解释是:旋转动作是由双积 x ′ = q ⊗ x ⊗ q ∗ \bold{x}'=\bold{q}\otimes\bold{x}\otimes \bold{q}^{\ast} x′=q⊗x⊗q∗完成的,向量 x \bold{x} x经历的旋转是由 q \bold{q} q中编码的旋转的两倍,或者等效的,四元数 q \bold{q} q编码了预期旋转的“一半”。
为了更好表达轴角和四元数的关系, v = ϕ u ∈ R 3 \bold{v}=\phi\bold{u}\in\mathbb{R}^3 v=ϕu∈R3,我们定义一个大写版本的指数映射:
E x p : R 3 → S 3 ; v ↦ E x p ( v ) = e v / 2 {\rm Exp}:\mathbb{R}^3\to S^3;\bold{v}\mapsto{\rm Exp(\bold{v})}=e^{\bold{v}/2} Exp:R3→S3;v↦Exp(v)=ev/2
它和指数映射的关系:
E x p ≜ exp ( v / 2 ) {\rm Exp}\triangleq\exp(\bold{v}/2) Exp≜exp(v/2)
引入角速度向量 ω = 2 Ω ∈ R 3 \boldsymbol{\omega}=2\bold{\Omega}\in \mathbb{R}^3 ω=2Ω∈R3
q ˙ = 1 2 q ⊗ ω q = e ω t / 2 \dot{\bold{q}}=\dfrac{1}{2}\bold{q}\otimes\boldsymbol{\omega}\\ \bold{q}=e^{\boldsymbol{\omega}t/2} q˙=21q⊗ωq=eωt/2
令 v = ϕ u \bold{v}=\phi \bold{u} v=ϕu代表一个绕轴 u \bold{u} u旋转角度 ϕ \phi ϕ的旋转向量
q ≜ E x p ( ϕ u ) = e ϕ u / 2 = cos ϕ 2 + u sin ϕ 2 = [ cos ϕ 2 u sin ϕ 2 ] \bold{q}\triangleq {\rm Exp}(\phi \bold{u})=e^{\phi \bold{u}/2}=\cos\dfrac{\phi}{2}+\bold{u}\sin\frac{\phi}{2}= \begin{bmatrix}\cos\dfrac{\phi}{2} \\ \bold{u}\sin\dfrac{\phi}{2}\end{bmatrix} q≜Exp(ϕu)=eϕu/2=cos2ϕ+usin2ϕ= cos2ϕusin2ϕ
旋转向量到四元数的转换将被记作 q = q { v } ≜ E x p ( v ) \bold{q}=\bold{q}\{\bold{v}\}\triangleq {\rm Exp}(\bold{v}) q=q{v}≜Exp(v)
我们定义对数映射是指数映射的逆
L o g : S 3 → R 3 ; q ↦ L o g ( q ) = u ϕ \rm Log:S^3\to \mathbb{R}^3;\bold{q}\mapsto{\rm Log}(\bold{q})=\bold{u}\phi Log:S3→R3;q↦Log(q)=uϕ
其中
ϕ = 2 arctan ( ∥ q v ∥ , q w ) u = q v ∥ q v ∥ \begin{aligned} \phi=2\arctan(\Vert\bold{q}_v\Vert,q_w)\\ \bold{u}=\dfrac{\bold{q}_v}{\Vert\bold{q}_v\Vert} \end{aligned} ϕ=2arctan(∥qv∥,qw)u=∥qv∥qv
大写对数映射和对数映射的关系:
L o g ( q ) ≜ 2 log ( q ) \rm Log(\bold{q})\triangleq 2\log(\bold{q}) Log(q)≜2log(q)
四元数可以非常方便的计算适当的方向插值。
给定由四元数 q 1 \bold{q}_1 q1和 q 1 \bold{q}_1 q1表示的两个方向,我们想找到一个四元数函数 q ( t ) , t ∈ [ 0 , 1 ] \bold{q}(t), t\in[0,1] q(t),t∈[0,1],它从 q ( 0 ) = q 0 \bold{q}(0) = \bold{q}_0 q(0)=q0到 q ( 1 ) = q 1 \bold{q}(1) = \bold{q}_1 q(1)=q1进行线性插值。这种插值是这样的,当 t t t从0进化到1时,物体将沿着固定的轴以恒定的速度从方向 q 0 \bold{q}_0 q0不断旋转到方向 q 1 \bold{q}_1 q1。
第一种方法是使用四元数代数,首先计算从 q 0 \bold{q}_0 q0到 q 1 \bold{q}_1 q1的方向增量 Δ q \Delta\bold{q} Δq满足 q 1 = q 0 ⊗ Δ q \bold{q}_1=\bold{q}_0\otimes \Delta \bold{q} q1=q0⊗Δq
Δ q = q 0 ∗ ⊗ q 1 \Delta \bold{q}=\bold{q}_0^{\ast}\otimes\bold{q}_1 Δq=q0∗⊗q1
接着使用对数映射获得对应的旋转向量 Δ ϕ = u Δ ϕ \Delta \boldsymbol{\phi}=\bold{u}\Delta\phi Δϕ=uΔϕ
u Δ ϕ = L o g ( Δ q ) \bold{u}\Delta\phi={\rm Log}(\Delta \bold{q}) uΔϕ=Log(Δq)
保持旋转轴 u \bold{u} u不变,对旋转角度进行插值 δ ϕ = t Δ ϕ \delta \phi = t\Delta \phi δϕ=tΔϕ。利用指数映射将其映射回四元数 δ q = E x p ( u δ ϕ ) \delta \bold{q}={\rm Exp}(\bold{u}\delta \phi) δq=Exp(uδϕ),接着与原四元数组合得到最终的插值结果:
q ( t ) = q 0 ⊗ δ q = q 0 ⊗ E x p ( t u Δ ϕ ) = q 0 ⊗ E x p ( t L o g ( q 0 ∗ ⊗ q 1 ) = q 0 ⊗ ( q 0 ∗ ⊗ q 1 ) t \begin{aligned} \bold{q}(t)&=\bold{q}_0\otimes\delta \bold{q}\\ &=\bold{q}_0\otimes{\rm Exp}(t\bold{u}\Delta \phi) \\&=\bold{q}_0\otimes{\rm Exp}(t{\rm Log}(\bold{q}_0^{\ast}\otimes\bold{q}_1) \\&=\bold{q}_0\otimes(\bold{q}_0^{\ast}\otimes\bold{q}_1)^t \end{aligned} q(t)=q0⊗δq=q0⊗Exp(tuΔϕ)=q0⊗Exp(tLog(q0∗⊗q1)=q0⊗(q0∗⊗q1)t
上式经常被实现为
q ( t ) = q 0 ⊗ [ cos ( t Δ ϕ / 2 ) u sin ( t Δ ϕ / 2 ) ] \bold{q}(t)=\bold{q}_0\otimes \begin{bmatrix} \cos(t\Delta \phi/2)\\ \bold{u}\sin(t\Delta\phi/2) \end{bmatrix} q(t)=q0⊗[cos(tΔϕ/2)usin(tΔϕ/2)]
可以开发出与四元数代数内部无关的Slerp方法,甚至与嵌入圆弧的空间维数无关。
我们将四元数 q 0 \bold{q}_0 q0和 q 1 \bold{q}_1 q1作为单位球中的两个单位向量,在同一空间中进行插值,插值后的 q ( t ) \bold{q}(t) q(t)是单位向量,它以恒定的角速度跟随连接 q 0 \bold{q}_0 q0和 q 1 \bold{q}_1 q1的最短球面路径。这条路径是有 q 0 , q 1 \bold{q}_0 ,\bold{q}_1 q0,q1和原点定义的平面与单位球相交形成的平面弧。
第一种方法使用向量代数并遵循上面的思想。考虑 q 0 \bold{q}_0 q0和 q 1 \bold{q}_1 q1是两个单位向量;它们之间的夹角是由标量积得到的:
cos ( Δ θ ) = q 0 T q 1 ⟺ Δ θ = arccos ( q 0 T q 1 ) \cos(\Delta \theta)=\bold{q}^T_0\bold{q}_1\iff\Delta\theta=\arccos(\bold{q}^T_0\bold{q}_1) cos(Δθ)=q0Tq1⟺Δθ=arccos(q0Tq1)
我们命名旋转平面为 π \pi π,并构建该平面的一组单位正交基 { q 0 , q ⊥ } \{\bold{q}_0,\bold{q}_{\perp}\} {q0,q⊥},其中 q ⊥ \bold{q}_{\perp} q⊥来自于 q 1 \bold{q}_1 q1对 q 0 \bold{q}_0 q0的单位正交化
q ⊥ = q 1 − ( q 0 T q 1 ) q 0 ∥ q 1 − ( q 0 T q 1 ) q 0 ∥ \bold{q}_{\perp}=\dfrac{\bold{q}_1-(\bold{q}_0^T\bold{q}_1)\bold{q}_0}{\Vert\bold{q}_1-(\bold{q}_0^T\bold{q}_1)\bold{q}_0\Vert} q⊥=∥q1−(q0Tq1)q0∥q1−(q0Tq1)q0
可以得到
q 1 = q 0 cos Δ θ + q ⊥ sin Δ θ (1) \bold{q}_1=\bold{q}_0\cos\Delta\theta+\bold{q}_{\perp}\sin\Delta\theta\tag{1} q1