E - Lucky bag(简单状态压缩dp)
题目链接
题意:给你n个物品,m个福袋,让你将这n个物品用m个福袋打包(福袋可以为空),让分完之后的总方差最小,输出最小方差。
思路:其实由题目的数据范围,n<=16,可以大概推出应该是状态压缩dp
我们用f [ i ][ j ] 表示当前状态 i (二进制表示),用 j 个袋子的最小平方差
那么我们的答案就是f [(1<
如何状态计算和状态转移呢
那么应该有两种状态转移
1:第一种就是加空福袋
2:第二种就是f[i][j] = f[i-x][j-1] + f[x][1],其中x为j的子集,就是转移前的一个转态
题解代码
#include
using namespace std;
int main(void)
{
int n, d, x;
long double w[15];
long double ave = 0;
long double dp[(1 << 15)][16];
long double y;
cin >> n >> d;
for (int i = 0; i < n; i++) // 计算总体均值
cin >> w[i], ave += w[i];
ave /= ((long double)d);
for (int i = 0; i < (1 << n); i++) // 枚举所有状态
{
y = 0; // 统计该状态下的物品花费
for (int j = 0; j < n; j++)
{
if (i & (1 << j))
y += w[j];
}
dp[i][1] = pow(y - ave, 2);
for (int j = 2; j <= d; j++) // 进行状态转移
{
dp[i][j] = dp[i][j - 1] + dp[0][1]; // 1:物品数不变,多了一个空袋子
x = i;
while (x > 0) // 2:枚举其状态转移的上一个状态,遍历j的i的所有子集
{
dp[i][j] = min(dp[i][j], dp[i - x][j - 1] + dp[x][1]);
x = (x - 1) & i;
// cout << x << endl;
}
}
}
cout << setprecision(10) << (dp[(1 << n) - 1][d] / ((long double)d)) << endl;
return 0;
}
F - Random Update Query
题意:给你一个长度为n为数组,以及m次操作,每次操作给出 l , r , x,将 l 到 r 里面随机一个数改为x,问数组的期望值
思路:其实简单分析一下,可以知道就是涉及加法,乘法双懒标记,以及区间修改,单点查询的线段树,(懒标记维护时先乘后加),就是板子
#include
using namespace std;
#define pi acos(-1)
#define xx first
#define yy second
#define endl "\n"
#define lowbit(x) x & (-x)
#define int long long
#define ull unsigned long long
#define pb push_back
typedef pair PII;
typedef pair PDD;
#define LF(x) fixed << setprecision(x)
#define max(a, b) (((a) > (b)) ? (a) : (b))
#define min(a, b) (((a) < (b)) ? (a) : (b))
#define Yshanqian ios::sync_with_stdio(false), cin.tie(0), cout.tie(0);
const int N = 1e6 + 10, M = 1010, inf = 0x3f3f3f3f, mod = 998244353, P = 13331;
const double eps = 1e-8;
int n, m;
int w[N];
struct node
{
int l, r;
int sum;
int add;
int mul;
} tr[N << 2];
int qpow(int a, int b)
{
int res = 1;
while (b)
{
if (b & 1)
res = res * a % mod;
a = a * a % mod;
b >>= 1;
}
return res;
}
void change(int u, int ADD, int MUL)
{
tr[u].sum = tr[u].sum * MUL % mod + (tr[u].r - tr[u].l + 1) * ADD % mod;
tr[u].mul = tr[u].mul * MUL % mod;
tr[u].add = (tr[u].add * MUL % mod + ADD) % mod;
}
void pushdown(int u)
{
change(u << 1, tr[u].add, tr[u].mul);
change(u << 1 | 1, tr[u].add, tr[u].mul);
tr[u].add = 0;
tr[u].mul = 1;
}
void pushup(int u)
{
tr[u].sum = (tr[u << 1].sum + tr[u << 1 | 1].sum) % mod;
}
void build(int u, int l, int r)
{
tr[u] = {l, r, 0, 0, 1};
if (l == r)
{
tr[u] = {l, r, w[l], 0, 1};
return;
}
int mid = l + r >> 1;
build(u << 1, l, mid);
build(u << 1 | 1, mid + 1, r);
pushup(u);
}
void modify(int u, int l, int r, int ADD, int MUL)
{
if (tr[u].l >= l && tr[u].r <= r)
{
change(u, ADD, MUL);
return;
}
pushdown(u);
int mid = tr[u].l + tr[u].r >> 1;
if (l <= mid)
modify(u << 1, l, r, ADD, MUL);
if (r > mid)
modify(u << 1 | 1, l, r, ADD, MUL);
pushup(u);
}
int query(int u, int x)
{
if (tr[u].l == x && tr[u].r == x)
return tr[u].sum;
pushdown(u);
int ans = 0;
int mid = tr[u].l + tr[u].r >> 1;
if (x <= mid)
return query(u << 1, x);
else
return query(u << 1 | 1, x);
}
void solve()
{
cin >> n >> m;
for (int i = 1; i <= n; i++)
cin >> w[i];
build(1, 1, n);
while (m--)
{
int l, r, x;
cin >> l >> r >> x;
int t = r - l + 1;
int p = qpow(t, mod - 2);
modify(1, l, r, x * p % mod, (t - 1) * p % mod); // 前面为要加的数,后面为要乘的数
}
for (int i = 1; i <= n; i++)
cout << query(1, i)%mod << ' ';
}
signed main()
{
Yshanqian;
int T;
T = 1;
// cin >> T;
for (int cases = 1; cases <= T; ++cases)
{
// cout<<"Case #"<