- 【深度解析】ICLR:人工智能领域的顶级学术会议 | 顶会与SCI期刊的区别全攻略
X_taiyang18
人工智能
【深度解析】ICLR:人工智能领域的顶级学术会议|顶会与SCI期刊的区别全攻略简介在人工智能和机器学习领域,ICLR(InternationalConferenceonLearningRepresentations)被誉为“深度学习的顶级会议”。自2013年由深度学习三巨头中的YoshuaBengio和YannLeCun创办以来,ICLR迅速崛起,成为全球科研人员争相投稿的学术盛会。那么,ICLR
- 15. MySql高级之常用SQL技巧☆
喵先生呢
#MySql高级mysql
文章目录MySql高级之常用SQL技巧☆1.SQL执行顺序2.正则表达式使用3.MySQL常用函数3.1数字函数3.2字符串函数3.3日期函数3.4聚合函数☆MySql高级之常用SQL技巧☆1.SQL执行顺序编写顺序selectdistinctfromjoinONwheregroupbyhavingorderbylimit执行顺序fromonjoinwheregroupbyhavingselect
- elementuiPlus日期范围选择el-date-picker动态禁用时间选择
瑶琴AI前端
vue.jsjavascript前端elementui
记录项目中的一个小需求:使用elementuiPlus日期选择组件时,需要动态禁用可选择的日期,禁止选中今天之后的日期,且选中的日期范围不饿能超过30天。饿了么组件的plus版本去掉了v2版本的配置项picker,改用@calendar-change事件来代替,使用disabled-date属性和@calendar-change事件就可以完成动态禁用日期的行为。代码如下:constcurDay=r
- linux es后台启动命令,小白学ES 02-Linux中部署Elasticsearch单机服务
热带汽水
linuxes后台启动命令
目录@此部署过程以Elasticsearch-5.6.10版本为例,后续的学习和演示也用此版本.1前提:安装JDK学习使用ES的前提是成功安装JDK——很基础的一项步骤,这里省略.此处学习演示所用的JDK版本为:[root@host-10-0-20-50~]#java-versionjavaversion"1.8.0_151"Java(TM)SERuntimeEnvironment(build1.
- springboot之https服务器(生成keystore证书库及转cer证书)
Biu→Biu丶
springboothttpsjavahttps
一.生成自签名证书打开cmd输入命令生成证书:keytool-genkeypair-aliastomcat_https-keypass123456-keyalgRSA-keysize1024-validity365-keystore./https-java.keystore-storepass123456属性说明:-alias别名-keypass指定生成密钥的密码-keyalg指定密钥使用的加密算
- python画二维矩阵图_基于python 二维数组及画图的实例详解
weixin_39785400
python画二维矩阵图
1、二维数组取值注:不管是二维数组,还是一维数组,数组里的数据类型要一模一样,即若是数值型,全为数值型#二维数组importnumpyasnplist1=[[1.73,1.68,1.71,1.89,1.78],[54.4,59.2,63.6,88.4,68.7]]list3=[1.73,1.68,1.71,1.89,1.78]list4=[54.4,59.2,63.6,88.4,68.7]list
- java web 项目中封装的下拉列表小组件:实现下拉列表使用者前后端0行代码 ...
weixin_34383618
java前端后端ViewUI
导读:主要从4个方面来阐述,1:背景;2:思路;3:代码实现;4:使用一:封装背景像easyui之类的纯前端组件,也有下拉列表组件,但是使用的时候,每个下拉列表,要配一个URL,以及设置URL反回来的值和select的text,和value的对应关系,这有2个问题:一使用者必须知道URL,二,如果页面有10个下拉表表,要请求后台10次,肯定影响性能,而我想要的是使用者只要申明用哪个数据字典就行了,
- matlab 延迟算子,时间序列分析-----2---时间序列预处理
这块必被安排
matlab延迟算子
既然有了序列,那怎么拿来分析呢?时间序列分析方法分为描述性时序分析和统计时序分析。1、描述性时序分析通过直观的数据比较或绘图观测,寻找序列中蕴含的发展规律,这种分析方法就称为描述性时序分析。描述性时序分析方法具有操作简单、直观有效的特点,它通常是人们进行统计时序分析的第一步。2、统计时序分析(1)频域分析方法原理:假设任何一种无趋势的时间序列都可以分解成若干不同频率的周期波动发展过程:1)早期的频
- 【转】时间序列分析——基于R,王燕
weixin_30780221
r语言
《时间序列分析——基于R》王燕,读书笔记笔记:一、检验:1、平稳性检验:图检验方法:时序图检验:该序列有明显的趋势性或周期性,则不是平稳序列自相关图检验:(acf函数)平稳序列具有短期相关性,即随着延迟期数k的增加,平稳序列的自相关系数ρ会很快地衰减向0(指数级衰减),反之非平稳序列衰减速度会比较慢构造检验统计量进行假设检验:单位根检验adfTest()——fUnitRoots包2、纯随机性检验、
- 管理艺术:从策略到执行
AI天才研究院
ChatGPTAI大模型企业级应用开发实战DeepSeekR1&大数据AI人工智能大模型大厂Offer收割机面试题简历程序员读书硅基计算碳基计算认知计算生物计算深度学习神经网络大数据AIGCAGILLMJavaPython架构设计Agent程序员实现财富自由
管理艺术:从策略到执行关键词:管理艺术、策略、执行、领导力、创新、社会责任、企业文化摘要:本文深入探讨管理艺术,从策略到执行,解析管理艺术在企业的应用与实际操作。文章分为七个部分,涵盖管理艺术的基础、策略层面、执行层面、心理层面、创新层面、社会层面及综合评估与反思,旨在为读者提供全面的管理艺术指南。目录大纲第一部分:管理艺术的基础第1章:管理艺术的概述1.1管理艺术的概念与重要性1.2管理艺术的历
- Linux编程:嵌入式ARM平台Linux网络实时性能优化
橘色的喵
Linux性能优化功能优化arm开发linux网络实时性能优化内核优化
文章目录0.概要1.时钟周期与网络性能的权衡时钟周期(ClockPeriod)**优化策略:****副作用:**2.网络中断优化**问题:****优化策略:****副作用:**3.网络协议栈优化**优化策略:****副作用:**4.禁用内存页面交换(禁用Swap)为什么禁用Swap?**禁用Swap配置:****副作用:**5.配置`swappiness`为0**如何设置`swappiness`为
- ARIMA差分自回归移动平均模型--时间序列预测
别团等shy哥发育
数据挖掘与机器学习回归python数据挖掘时间序列分析机器学习
ARIMA差分自回归移动平均模型1、ARIMA模型理论基础2、ARIMA建模步骤3、ARIMA建模实战3.1导入模块3.2加载数据3.3平稳性检验3.4单位根检验3.4白噪声检验3.5模型定阶3.6参数估计3.7模型的显著性检验3.8模型预测3.8模型拟合效果展示参考文献论文:文章:1、ARIMA模型理论基础 ARIMA是差分自回归移动平均模型的引文缩写,其中AR表示的是自回归模型,MA表示的是
- 正则表达式匹配空值
wukurua
正则表达式正则表达式
.{0}可匹配空值例如:port=(.{0})可匹配port=,匹配结果为:这个方法适用于这个字段不一定有值,例如有时port=80,有时port=,这时候就可以这样写:port=(.{0}|\d+)把空值放在前面,先判断是否为空完再判断是否满足值,避免出现因为优先匹配值而忽略了空值的判断,例如:port=(.*|.{0})去匹配port=824413,结果为:与本意相违背。
- linux下共享内存和消息队列实现多进程间数据收发
hsy12342611
linuxlinuxexecve
linux下进程通信的方式有很多,共享内存,消息队列,管道等。共享内存可以传输大量数据,但是多个进程同时读取共享内存就会出现脏读,可以借助消息队列实现多进程消息发送和接收。这种组合方式在实际开发中应用还是很多的,接下来就看一下。目录1.共享内存操作api(1)创建共享内存(2)挂载共享内存到当前进程(3)取消挂载(4)共享内存控制函数-可以删除2.消息队列操作api(1)创建消息附列(2)往消息队
- 深入探讨:CME期货CBOT高频合约历史行情数据分析方法
hightick
外盘期货高频历史行情数据集数据分析数据挖掘金融python数据库
深入探讨:CME期货CBOT高频合约历史行情数据分析方法为了促进学习和研究,我们在此分享一部分匿名处理的外盘期货高频历史行情数据集。外盘期货分钟高频历史行情数据链接:https://pan.baidu.com/s/19zhe1CCpDM56amDKO2nMwQ?pwd=4wpq提取码:4wpq请注意,分享这些数据的目的是为了教育和研究,不构成任何投资建议。交易量与价格关系分析交易量与价格之间的关系
- 【Vim Masterclass 笔记10】S06L23:Vim 核心操作训练之 —— 文本的搜索、查找与替换操作(第二部分)
安冬的码畜日常
VimMasterclassvim笔记vim查找与替换
文章目录S06L23Search,Find,andReplace-PartTwo1文本替换命令`:s/old/new/`2指定范围的文本替换3特例:路径的替换4文件行号的配置5要点总结(1)搜索当前行(SameLineSearching)(2)跨行搜索(Searching)(3)替换命令(SubstituteCommand)写在前面根据李笑来《自学是门手艺》的建议,梳理完知识要点后又对这章内容制作
- 【Vim Masterclass 笔记13】第 7 章:Vim 核心操作之——文本对象与宏操作 + S07L28:Vim 文本对象
安冬的码畜日常
VimMasterclassvim笔记vim文本对象文本对象
文章目录Section7:TextObjectsandMacrosS07L28TextObjects1文本对象的含义2操作文本对象的基本语法3操作光标所在的整个单词4删除光标所在的整个句子5操作光标所在的整个段落6删除光标所在的中括号内的文本7删除光标所在的小括号内的文本8操作尖括号内的文本9操作光标所在的标签文本10操作大括号内的文本11操作光标所在的各种括号内的文本12本节思维导图写在前面本篇
- 【论文精读】MotionLM
EEPI
自动驾驶深度学习论文阅读
【论文精读】MotionLM1背景2存在的问题3具体方案轨迹转运动序列模型轨迹去重和聚类loss1背景团队:Waymo时间:2023.9代码:简介:采用自回归的方式做轨迹生成,能够更好地建模交互,且避免模态坍缩,在数据集达到了SOTA。2存在的问题轨迹回归方面:原本xy预测认为空间过大,有的xy很大(t大速度快的时候),有的xy很小(t小速度慢的时候)。3具体方案Encoder采用了之前的论文Wa
- 【论文精读】Sparse4D v2: Recurrent Temporal Fusion with Sparse Model
EEPI
自动驾驶人工智能论文阅读深度学习目标检测
1背景团队:地平线时间:代码:简介:这篇论文是Sparse4D的续作,区别主要在于特征时序融合上,新版提高了运算效率。后续端到端SparseDrive的基本框架与这篇基本类似。2存在的问题2.1其他稀疏3D检测的问题PETR是query-based方法,但是为了实现特征融合,进行了全局注意力机制,导致高计算量。2.2Sparse4Dv1的问题Sparse4Dv1的时序特征融合hierarchyfu
- GBase 8a慢SQL优化案例-2 通过分析函数改写不等值关联排序取值
dudulang8088
sql数据库数据仓库
某气象现场一条查询语句,大数据场景下,单个机构查询耗时5分钟以上,需要分析,SQL语句如下:SELECTt.station_no,t.collect_time_stamp,t.r2020,t.topFROM(SELECTt1.station_no,t1.collect_time_stamp,t1.r2020,(SELECTCOUNT(*)+1FROM(SELECTstation_no,--站点编号
- 【PCIe XDMA开发】XDMA与MIG位宽一致性要求
RunningCamel
PCIeFPGAPCIeXDMA
在基于FPGA的PCIeXDMA与MIG(MemoryInterfaceGenerator)协同设计中,位宽一致性对传输效率有重要影响,但具体实现需结合系统架构和性能需求综合考虑。一、位宽一致性的必要性数据路径对齐要求XDMA的AXI接口位宽(如128/256/512位)需与MIG的物理接口位宽保持一致15。若两者不一致,需插入位宽转换模块(如AXIDataWidthConverter),这会引入
- ADS基础教程19 - 电磁仿真(EM)基本概念和实操
RunningCamel
ADS仿真ADS仿真
EM介绍一、引言二、基本概念1.EM介绍2.Momentum介绍3.FEM介绍4.Substrate介绍三、创建Layout并进行Momentum仿真1.创建Layout2.添加Microtrip(微带线)3.添加Substrate4.Momentum仿真四、总结一、引言本章节开始介绍EM的基本概念、内容以及实现具体步骤,并介绍如何在ADS中创建一个Layout,然后执行Momentum仿真过程。
- ABC392 G FFT求卷积模板
一条大祥脚
算法
首先卷积就是如下的定义他有啥用呢,如果ai,bja_i,b_jai,bj对ai∗bja_i*b_jai∗bj有贡献,我们可以把a,ba,ba,b转化成cntcntcnt数组,然后做卷积,那么result(ai∗bj)result(a_i*b_j)result(ai∗bj)就会记录答案。比如如果我们用卷积来做a+ba+ba+b问题的话,给你a,ba,ba,b数组,问a+b=ca+b=ca+b=c,对
- 【GD32】从0开始学GD32单片机(5)—— USART串口通信详解
马浩同学
GD32系列单片机嵌入式硬件网络
目录概述功能概述全双工异步通信模式参数说明串口发送串口接收例程串口通信概述USART串口将是我们接触的第一个通信协议,也是最常用的通信协议。在项目开发中,我们常常用串口来打印单片机的运行日志,在查找一些运行时异常时特别有用,如果能通过串口日志打印来找出运行时的异常,肯定就不需要再debug了,省去了很多时间。下面是GD32串口的结构框图,咋一看非常复杂,但其实日常我们只使用了其中一小部分。功能概述
- 外贸怎么找客户?用AI社媒引流王在Facebook精准获客!
AIsocial
AI社媒引流王facebook营销AI社媒引流王
在跨境电商和外贸行业,外贸怎么找客户是每个企业都关心的问题。传统的B2B平台、展会、邮件营销等方式虽有效,但竞争激烈、成本高昂,转化率也越来越低。那么,有没有更精准、高效、低成本的获客方式?答案是:社交媒体营销!Facebook作为全球最大的社交平台,聚集了大量企业决策者和终端买家,是外贸企业获客的关键渠道。而通过AI社媒引流,我们可以利用Facebook上的群组、关键词霸屏、发消息、公共主页等方
- 掌握LinkedIn营销技巧,让外贸客户主动找上门!
AIsocial
AI社媒引流王人工智能大数据
LinkedIn作为全球最大的职场社交平台,聚集了超过9亿名来自200多个国家的职业人士。对于外贸企业来说,LinkedIn不仅是展示公司形象的窗口,更是精准获取高价值客户的利器。今天,我们将分享一套LinkedIn营销的实操技巧,帮助你高效开发客户,让外贸生意更上一层楼!1.打造专业的个人和公司主页LinkedIn营销的第一步是树立专业形象。无论是个人账号还是公司主页,都需要具备吸引力和可信度。
- TikTok营销实操干货:如何让你的外贸生意快速出圈?
AIsocial
AI社媒引流王人工智能大数据
TikTok,作为全球下载量最高的短视频平台,已经成为外贸企业获取海外客户的强大工具。相比传统社交媒体,TikTok凭借其短视频传播的高效性和娱乐性,为外贸营销提供了新的增长机会。那么,外贸人应该如何玩转TikTok,让生意快速出圈?今天就分享一套TikTok营销实操干货技巧,助你打造爆款内容,精准获取客户!1.找准目标市场,明确定位TikTok覆盖全球200多个国家,每个地区的用户喜好和文化都不
- DeepSeek底层揭秘——多头潜在注意力MLA
9命怪猫
AIai人工智能大模型
目录1.多头潜在注意力(MLA)2.核心功能3.技术要素4.难点挑战暨含解决方案5.技术路径6.应用场景7.实际案例:DeepSeek8.最新研究与技术进展9.未来趋势猫哥说1.多头潜在注意力(MLA)(1)定义“多头潜在注意力(Multi-HeadLatentAttention,MLA)”是一种基于注意力机制的深度学习方法,旨在通过多个注意力头(Multi-HeadAttention)对潜在空间
- Linux常见的性能优化策略
这多冒昧啊
linux服务器运维
目录1.CPU性能优化:调整进程优先级2.内存优化:禁用透明大页3.磁盘I/O优化:切换I/O调度器4.网络优化:TCP缓冲区调优5.文件句柄优化:高并发API服务器策略总结:1.CPU性能优化:调整进程优先级场景描述:某跨境电商平台在“黑色星期五”大促期间,订单处理系统(Java服务)出现响应延迟。运维团队通过pidstat-u1发现名为log_aggregator的Python日志收集进程(P
- linux内网部署deepseek大模型(ollama+anythingllm)
wukurua
大模型linux大模型人工智能docker
一、安装ollama来源:ollama/docs/linux.mdatmain·ollama/ollama·GitHub1.下载安装包ollama下载链接:https://ollama.com/download/ollama-linux-amd64.tgz,下载后放在用户目录下2.运行脚本#!/bin/sh#ThisscriptinstallsOllamaonLinux.#Itdetectsthe
- apache 安装linux windows
墙头上一根草
apacheinuxwindows
linux安装Apache 有两种方式一种是手动安装通过二进制的文件进行安装,另外一种就是通过yum 安装,此中安装方式,需要物理机联网。以下分别介绍两种的安装方式
通过二进制文件安装Apache需要的软件有apr,apr-util,pcre
1,安装 apr 下载地址:htt
- fill_parent、wrap_content和match_parent的区别
Cb123456
match_parentfill_parent
fill_parent、wrap_content和match_parent的区别:
1)fill_parent
设置一个构件的布局为fill_parent将强制性地使构件扩展,以填充布局单元内尽可能多的空间。这跟Windows控件的dockstyle属性大体一致。设置一个顶部布局或控件为fill_parent将强制性让它布满整个屏幕。
2) wrap_conte
- 网页自适应设计
天子之骄
htmlcss响应式设计页面自适应
网页自适应设计
网页对浏览器窗口的自适应支持变得越来越重要了。自适应响应设计更是异常火爆。再加上移动端的崛起,更是如日中天。以前为了适应不同屏幕分布率和浏览器窗口的扩大和缩小,需要设计几套css样式,用js脚本判断窗口大小,选择加载。结构臃肿,加载负担较大。现笔者经过一定时间的学习,有所心得,故分享于此,加强交流,共同进步。同时希望对大家有所
- [sql server] 分组取最大最小常用sql
一炮送你回车库
SQL Server
--分组取最大最小常用sql--测试环境if OBJECT_ID('tb') is not null drop table tb;gocreate table tb( col1 int, col2 int, Fcount int)insert into tbselect 11,20,1 union allselect 11,22,1 union allselect 1
- ImageIO写图片输出到硬盘
3213213333332132
javaimage
package awt;
import java.awt.Color;
import java.awt.Font;
import java.awt.Graphics;
import java.awt.image.BufferedImage;
import java.io.File;
import java.io.IOException;
import javax.imagei
- 自己的String动态数组
宝剑锋梅花香
java动态数组数组
数组还是好说,学过一两门编程语言的就知道,需要注意的是数组声明时需要把大小给它定下来,比如声明一个字符串类型的数组:String str[]=new String[10]; 但是问题就来了,每次都是大小确定的数组,我需要数组大小不固定随时变化怎么办呢? 动态数组就这样应运而生,龙哥给我们讲的是自己用代码写动态数组,并非用的ArrayList 看看字符
- pinyin4j工具类
darkranger
.net
pinyin4j工具类Java工具类 2010-04-24 00:47:00 阅读69 评论0 字号:大中小
引入pinyin4j-2.5.0.jar包:
pinyin4j是一个功能强悍的汉语拼音工具包,主要是从汉语获取各种格式和需求的拼音,功能强悍,下面看看如何使用pinyin4j。
本人以前用AscII编码提取工具,效果不理想,现在用pinyin4j简单实现了一个。功能还不是很完美,
- StarUML学习笔记----基本概念
aijuans
UML建模
介绍StarUML的基本概念,这些都是有效运用StarUML?所需要的。包括对模型、视图、图、项目、单元、方法、框架、模型块及其差异以及UML轮廓。
模型、视与图(Model, View and Diagram)
&
- Activiti最终总结
avords
Activiti id 工作流
1、流程定义ID:ProcessDefinitionId,当定义一个流程就会产生。
2、流程实例ID:ProcessInstanceId,当开始一个具体的流程时就会产生,也就是不同的流程实例ID可能有相同的流程定义ID。
3、TaskId,每一个userTask都会有一个Id这个是存在于流程实例上的。
4、TaskDefinitionKey和(ActivityImpl activityId
- 从省市区多重级联想到的,react和jquery的差别
bee1314
jqueryUIreact
在我们的前端项目里经常会用到级联的select,比如省市区这样。通常这种级联大多是动态的。比如先加载了省,点击省加载市,点击市加载区。然后数据通常ajax返回。如果没有数据则说明到了叶子节点。 针对这种场景,如果我们使用jquery来实现,要考虑很多的问题,数据部分,以及大量的dom操作。比如这个页面上显示了某个区,这时候我切换省,要把市重新初始化数据,然后区域的部分要从页面
- Eclipse快捷键大全
bijian1013
javaeclipse快捷键
Ctrl+1 快速修复(最经典的快捷键,就不用多说了)Ctrl+D: 删除当前行 Ctrl+Alt+↓ 复制当前行到下一行(复制增加)Ctrl+Alt+↑ 复制当前行到上一行(复制增加)Alt+↓ 当前行和下面一行交互位置(特别实用,可以省去先剪切,再粘贴了)Alt+↑ 当前行和上面一行交互位置(同上)Alt+← 前一个编辑的页面Alt+→ 下一个编辑的页面(当然是针对上面那条来说了)Alt+En
- js 笔记 函数
征客丶
JavaScript
一、函数的使用
1.1、定义函数变量
var vName = funcation(params){
}
1.2、函数的调用
函数变量的调用: vName(params);
函数定义时自发调用:(function(params){})(params);
1.3、函数中变量赋值
var a = 'a';
var ff
- 【Scala四】分析Spark源代码总结的Scala语法二
bit1129
scala
1. Some操作
在下面的代码中,使用了Some操作:if (self.partitioner == Some(partitioner)),那么Some(partitioner)表示什么含义?首先partitioner是方法combineByKey传入的变量,
Some的文档说明:
/** Class `Some[A]` represents existin
- java 匿名内部类
BlueSkator
java匿名内部类
组合优先于继承
Java的匿名类,就是提供了一个快捷方便的手段,令继承关系可以方便地变成组合关系
继承只有一个时候才能用,当你要求子类的实例可以替代父类实例的位置时才可以用继承。
在Java中内部类主要分为成员内部类、局部内部类、匿名内部类、静态内部类。
内部类不是很好理解,但说白了其实也就是一个类中还包含着另外一个类如同一个人是由大脑、肢体、器官等身体结果组成,而内部类相
- 盗版win装在MAC有害发热,苹果的东西不值得买,win应该不用
ljy325
游戏applewindowsXPOS
Mac mini 型号: MC270CH-A RMB:5,688
Apple 对windows的产品支持不好,有以下问题:
1.装完了xp,发现机身很热虽然没有运行任何程序!貌似显卡跑游戏发热一样,按照那样的发热量,那部机子损耗很大,使用寿命受到严重的影响!
2.反观安装了Mac os的展示机,发热量很小,运行了1天温度也没有那么高
&nbs
- 读《研磨设计模式》-代码笔记-生成器模式-Builder
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
/**
* 生成器模式的意图在于将一个复杂的构建与其表示相分离,使得同样的构建过程可以创建不同的表示(GoF)
* 个人理解:
* 构建一个复杂的对象,对于创建者(Builder)来说,一是要有数据来源(rawData),二是要返回构
- JIRA与SVN插件安装
chenyu19891124
SVNjira
JIRA安装好后提交代码并要显示在JIRA上,这得需要用SVN的插件才能看见开发人员提交的代码。
1.下载svn与jira插件安装包,解压后在安装包(atlassian-jira-subversion-plugin-0.10.1)
2.解压出来的包里下的lib文件夹下的jar拷贝到(C:\Program Files\Atlassian\JIRA 4.3.4\atlassian-jira\WEB
- 常用数学思想方法
comsci
工作
对于搞工程和技术的朋友来讲,在工作中常常遇到一些实际问题,而采用常规的思维方式无法很好的解决这些问题,那么这个时候我们就需要用数学语言和数学工具,而使用数学工具的前提却是用数学思想的方法来描述问题。。下面转帖几种常用的数学思想方法,仅供学习和参考
函数思想
把某一数学问题用函数表示出来,并且利用函数探究这个问题的一般规律。这是最基本、最常用的数学方法
- pl/sql集合类型
daizj
oracle集合typepl/sql
--集合类型
/*
单行单列的数据,使用标量变量
单行多列数据,使用记录
单列多行数据,使用集合(。。。)
*集合:类似于数组也就是。pl/sql集合类型包括索引表(pl/sql table)、嵌套表(Nested Table)、变长数组(VARRAY)等
*/
/*
--集合方法
&n
- [Ofbiz]ofbiz初用
dinguangx
电商ofbiz
从github下载最新的ofbiz(截止2015-7-13),从源码进行ofbiz的试用
1. 加载测试库
ofbiz内置derby,通过下面的命令初始化测试库
./ant load-demo (与load-seed有一些区别)
2. 启动内置tomcat
./ant start
或
./startofbiz.sh
或
java -jar ofbiz.jar
&
- 结构体中最后一个元素是长度为0的数组
dcj3sjt126com
cgcc
在Linux源代码中,有很多的结构体最后都定义了一个元素个数为0个的数组,如/usr/include/linux/if_pppox.h中有这样一个结构体: struct pppoe_tag { __u16 tag_type; __u16 tag_len; &n
- Linux cp 实现强行覆盖
dcj3sjt126com
linux
发现在Fedora 10 /ubutun 里面用cp -fr src dest,即使加了-f也是不能强行覆盖的,这时怎么回事的呢?一两个文件还好说,就输几个yes吧,但是要是n多文件怎么办,那还不输死人呢?下面提供三种解决办法。 方法一
我们输入alias命令,看看系统给cp起了一个什么别名。
[root@localhost ~]# aliasalias cp=’cp -i’a
- Memcached(一)、HelloWorld
frank1234
memcached
一、简介
高性能的架构离不开缓存,分布式缓存中的佼佼者当属memcached,它通过客户端将不同的key hash到不同的memcached服务器中,而获取的时候也到相同的服务器中获取,由于不需要做集群同步,也就省去了集群间同步的开销和延迟,所以它相对于ehcache等缓存来说能更好的支持分布式应用,具有更强的横向伸缩能力。
二、客户端
选择一个memcached客户端,我这里用的是memc
- Search in Rotated Sorted Array II
hcx2013
search
Follow up for "Search in Rotated Sorted Array":What if duplicates are allowed?
Would this affect the run-time complexity? How and why?
Write a function to determine if a given ta
- Spring4新特性——更好的Java泛型操作API
jinnianshilongnian
spring4generic type
Spring4新特性——泛型限定式依赖注入
Spring4新特性——核心容器的其他改进
Spring4新特性——Web开发的增强
Spring4新特性——集成Bean Validation 1.1(JSR-349)到SpringMVC
Spring4新特性——Groovy Bean定义DSL
Spring4新特性——更好的Java泛型操作API
Spring4新
- CentOS安装JDK
liuxingguome
centos
1、行卸载原来的:
[root@localhost opt]# rpm -qa | grep java
tzdata-java-2014g-1.el6.noarch
java-1.7.0-openjdk-1.7.0.65-2.5.1.2.el6_5.x86_64
java-1.6.0-openjdk-1.6.0.0-11.1.13.4.el6.x86_64
[root@localhost
- 二分搜索专题2-在有序二维数组中搜索一个元素
OpenMind
二维数组算法二分搜索
1,设二维数组p的每行每列都按照下标递增的顺序递增。
用数学语言描述如下:p满足
(1),对任意的x1,x2,y,如果x1<x2,则p(x1,y)<p(x2,y);
(2),对任意的x,y1,y2, 如果y1<y2,则p(x,y1)<p(x,y2);
2,问题:
给定满足1的数组p和一个整数k,求是否存在x0,y0使得p(x0,y0)=k?
3,算法分析:
(
- java 随机数 Math与Random
SaraWon
javaMathRandom
今天需要在程序中产生随机数,知道有两种方法可以使用,但是使用Math和Random的区别还不是特别清楚,看到一篇文章是关于的,觉得写的还挺不错的,原文地址是
http://www.oschina.net/question/157182_45274?sort=default&p=1#answers
产生1到10之间的随机数的两种实现方式:
//Math
Math.roun
- oracle创建表空间
tugn
oracle
create temporary tablespace TXSJ_TEMP
tempfile 'E:\Oracle\oradata\TXSJ_TEMP.dbf'
size 32m
autoextend on
next 32m maxsize 2048m
extent m
- 使用Java8实现自己的个性化搜索引擎
yangshangchuan
javasuperword搜索引擎java8全文检索
需要对249本软件著作实现句子级别全文检索,这些著作均为PDF文件,不使用现有的框架如lucene,自己实现的方法如下:
1、从PDF文件中提取文本,这里的重点是如何最大可能地还原文本。提取之后的文本,一个句子一行保存为文本文件。
2、将所有文本文件合并为一个单一的文本文件,这样,每一个句子就有一个唯一行号。
3、对每一行文本进行分词,建立倒排表,倒排表的格式为:词=包含该词的总行数N=行号