三维凸包模板

poj3528

参照

#include <cstring>

#include <cstdio>

#include <cmath>

#include <algorithm>

using namespace std;

#define inf 0x7fffffff

#define max(a,b) (a>b?a:b)

#define min(a,b) (a<b?a:b)

#define eps 1e-7

#define MAXV 505



//三维点

struct pt

{

    double x, y, z;

    pt() {}

    pt(double _x, double _y, double _z): x(_x), y(_y), z(_z) {}

    pt operator - (const pt p1)

    {

        return pt(x - p1.x, y - p1.y, z - p1.z);

    }

    pt operator * (pt p)

    {

        return pt(y*p.z-z*p.y, z*p.x-x*p.z, x*p.y-y*p.x);    //叉乘

    }

    double operator ^ (pt p)

    {

        return x*p.x+y*p.y+z*p.z;    //点乘

    }

};



struct _3DCH

{

    struct fac

    {

        int a, b, c;    //表示凸包一个面上三个点的编号

        bool ok;        //表示该面是否属于最终凸包中的面

    };



    int n;    //初始点数

    pt P[MAXV];    //初始点



    int cnt;    //凸包表面的三角形数

    fac F[MAXV*8]; //凸包表面的三角形



    int to[MAXV][MAXV];



    double vlen(pt a)

    {

        return sqrt(a.x*a.x+a.y*a.y+a.z*a.z);    //向量长度

    }

    double area(pt a, pt b, pt c)

    {

        return vlen((b-a)*(c-a));    //三角形面积*2

    }

    double volume(pt a, pt b, pt c, pt d)

    {

        return (b-a)*(c-a)^(d-a);    //四面体有向体积*6

    }



    //正:点在面同向

    double ptof(pt &p, fac &f)

    {

        pt m = P[f.b]-P[f.a], n = P[f.c]-P[f.a], t = p-P[f.a];

        return (m * n) ^ t;

    }



    void deal(int p, int a, int b)

    {

        int f = to[a][b];

        fac add;

        if (F[f].ok)

        {

            if (ptof(P[p], F[f]) > eps)

                dfs(p, f);

            else

            {

                add.a = b, add.b = a, add.c = p, add.ok = 1;

                to[p][b] = to[a][p] = to[b][a] = cnt;

                F[cnt++] = add;

            }

        }

    }



    void dfs(int p, int cur)

    {

        F[cur].ok = 0;

        deal(p, F[cur].b, F[cur].a);

        deal(p, F[cur].c, F[cur].b);

        deal(p, F[cur].a, F[cur].c);

    }



    bool same(int s, int t)

    {

        pt &a = P[F[s].a], &b = P[F[s].b], &c = P[F[s].c];

        return fabs(volume(a, b, c, P[F[t].a])) < eps && fabs(volume(a, b, c, P[F[t].b])) < eps && fabs(volume(a, b, c, P[F[t].c])) < eps;

    }



    //构建三维凸包

    void construct()

    {

        cnt = 0;

        if (n < 4)

            return;



        

        bool sb = 1;

        //使前两点不公点

        for (int i = 1; i < n; i++)

        {

            if (vlen(P[0] - P[i]) > eps)

            {

                swap(P[1], P[i]);

                sb = 0;

                break;

            }

        }

        if (sb)return;



        sb = 1;

        //使前三点不公线

        for (int i = 2; i < n; i++)

        {

            if (vlen((P[0] - P[1]) * (P[1] - P[i])) > eps)

            {

                swap(P[2], P[i]);

                sb = 0;

                break;

            }

        }

        if (sb)return;



        sb = 1;

        //使前四点不共面

        for (int i = 3; i < n; i++)

        {

            if (fabs((P[0] - P[1]) * (P[1] - P[2]) ^ (P[0] - P[i])) > eps)

            {

                swap(P[3], P[i]);

                sb = 0;

                break;

            }

        }

        if (sb)return;

        





        fac add;

        for (int i = 0; i < 4; i++)

        {

            add.a = (i+1)%4, add.b = (i+2)%4, add.c = (i+3)%4, add.ok = 1;

            if (ptof(P[i], add) > 0)

                swap(add.b, add.c);

            to[add.a][add.b] = to[add.b][add.c] = to[add.c][add.a] = cnt;

            F[cnt++] = add;

        }



        for (int i = 4; i < n; i++)

        {

            for (int j = 0; j < cnt; j++)

            {

                if (F[j].ok && ptof(P[i], F[j]) > eps)

                {

                    dfs(i, j);

                    break;

                }

            }

        }

        int tmp = cnt;

        cnt = 0;

        for (int i = 0; i < tmp; i++)

        {

            if (F[i].ok)

            {

                F[cnt++] = F[i];

            }

        }

    }



    //表面积

    double area()

    {

        double ret = 0.0;

        for (int i = 0; i < cnt; i++)

        {

            ret += area(P[F[i].a], P[F[i].b], P[F[i].c]);

        }

        return ret / 2.0;

    }



    //体积

    double volume()

    {

        pt O(0, 0, 0);

        double ret = 0.0;

        for (int i = 0; i < cnt; i++)

        {

            ret += volume(O, P[F[i].a], P[F[i].b], P[F[i].c]);

        }

        return fabs(ret / 6.0);

    }



    //表面三角形数

    int facetCnt_tri()

    {

        return cnt;

    }



    //表面多边形数

    int facetCnt()

    {

        int ans = 0;

        for (int i = 0; i < cnt; i++)

        {

            bool nb = 1;

            for (int j = 0; j < i; j++)

            {

                if (same(i, j))

                {

                    nb = 0;

                    break;

                }

            }

            ans += nb;

        }

        return ans;

    }

}hull;





int main()

{

    int i,n;

    while(scanf("%d",&hull.n)!=EOF)

    {

        for(i = 0 ; i < hull.n ;i++)

        scanf("%lf%lf%lf",&hull.P[i].x,&hull.P[i].y,&hull.P[i].z);

        hull.construct();

        printf("%.3f\n",hull.area());

    }

    return 0;

}

 

你可能感兴趣的:(模板)