- Spring AI 第二讲 之 Chat Model API 第八节ZhiPu AI Chat
疼死老夫了
人工智能
SpringAI支持知普人工智能的各种人工智能语言模型。您可以与知普人工智能语言模型互动,并基于知普人工智能模型创建多语言对话助手。先决条件您需要与ZhiPuAI创建一个API,以访问ZhiPuAI语言模型。在ZhiPuAI注册页面创建账户,并在APIKeys页面生成令牌。SpringAI项目定义了一个名为spring.ai.zhipuai.api-key的配置属性,你应将其设置为从APIKeys
- Spring AI 第二讲 之 Chat Model API 第五节HuggingFace Chat
HuggingFaceInferenceEndpoints允许您在云中部署和提供机器学习模型,并通过API对其进行访问。开始使用有关HuggingFaceInferenceEndpoints的更多详细信息,请访问此处。前提条件添加spring-ai-huggingface依赖关系:org.springframework.aispring-ai-huggingface获取HuggingFaceAPI
- 动手实践OpenHands系列学习笔记3:LLM集成基础
JeffWoodNo.1
笔记人工智能
笔记3:LLM集成基础一、引言大型语言模型(LLM)是OpenHands代理系统的核心驱动力。本笔记将深入探讨LLMAPI调用的基本原理,以及如何在实践中实现与Claude等先进模型的基础连接模块,为构建AI代理系统奠定基础。二、LLMAPI调用基础知识2.1LLMAPI基本概念API密钥认证:访问LLM服务的身份凭证提示工程:构造有效请求以获取预期响应推理参数:控制模型输出的各种参数流式响应:增
- Redis 的特性、工作机制与性能优化全解(含搭建实战教程)
文章目录二、Redis的核心特性三、Redis的工作机制解析单线程模型(性能为何强大?)数据结构是性能的关键持久化机制(数据如何存下来?)四、Redis性能优化实战1.优化内存使用2.提升并发性能3.使用分片/集群机制4.异步处理五、Redis搭建流程(Linux环境)1.下载与解压2.编译并安装3.修改配置文件(推荐复制一份)4.启动Redis5.客户端连接测试六、Redis运维技巧与监控命令七
- Chat Model API
虾条_花吹雪
SpringAIjava
聊天模型API为开发人员提供了将人工智能聊天完成功能集成到应用程序中的能力。它利用预训练的语言模型,如GPT(生成预训练转换器),以自然语言对用户输入生成类似人类的响应。API通常通过向人工智能模型发送提示或部分对话来工作,然后人工智能模型根据其训练数据和对自然语言模式的理解生成对话的完成或继续。然后将完成的响应返回给应用程序,应用程序可以将其呈现给用户或用于进一步处理。Spring人工智能聊天模
- Python 库 包 sentence-transformers
音程
机器学习人工智能python开发语言
sentence-transformers是一个非常流行的Python库,专门用于将文本(句子、段落、文档)转换为高质量的语义向量(嵌入)。它基于Transformer架构(如BERT、RoBERTa、DistilBERT等)的预训练模型,并在大量语义相似性数据上进行了微调,能够捕捉句子之间的深层语义关系。什么是sentence-transformers?项目地址:https://www.sber
- 创客匠人视角下:创始人 IP 打造与知识变现的深度耦合路径
创小匠
tcp/ip大数据人工智能
在知识经济蓬勃发展的当下,创始人IP打造与知识变现的融合已成为行业破局关键。创客匠人作为深耕知识付费赛道多年的服务平台,其创始人老蒋提出的“土壤构建能力”理论,为理解这一融合逻辑提供了独特视角。从本质来看,创始人IP并非简单的个人品牌包装,而是企业价值观与专业能力的人格化投射。以创客匠人服务的众多知识创业者为例,成功的创始人IP往往具备三大特征:专业领域的深度沉淀、用户需求的精准洞察,以及价值输出
- 每天一个前端小知识 Day 23 - PWA 渐进式 Web 应用开发
蓝婷儿
python前端
PWA渐进式Web应用开发(离线缓存、桌面安装等)一、什么是PWA?PWA(ProgressiveWebApp)是一种让Web应用具有类似原生App用户体验的技术体系。PWA不是一个框架,而是由一组浏览器API组成的技术集合,包括:离线访问能力WebApp安装到桌面推送通知后台同步原生风格UIPWA的三大核心能力能力描述可安装性支持添加到桌面启动器,像原生App打开离线能力使用ServiceWor
- SIMULINK开发项目实例 1000 例专栏之第663例:基于simulink的SVPWM技术的研究的三相电压源逆变器建模仿真
xiaoheshang_123
MATLAB开发项目实例1000例专栏手把手教你学MATLAB专栏matlabsimulink
目录准备工作步骤详解第一步:创建Simulink项目第二步:选择并添加合适的库组件第三步:构建基本的三相电压源逆变器模型第四步:实现SVPWM算法第五步:仿真与调试第六步:结果分析第七步:优化与改进第八步:导出与部署总结三相电压源逆变器(VoltageSourceInverter,VSI)在电力电子中是将直流电转换为交流电的一种重要设备,广泛应用于电机驱动、不间断电源(UPS)、可再生能源系统等领
- 【推荐算法课程二】推荐算法介绍-深度学习算法
盒子6910
运维视角下的广告业务算法推荐算法深度学习运维开发运维人工智能
三、深度学习在推荐系统中的应用3.1深度学习推荐模型的演化关系图3.2AutoRec——单隐层神经网络推荐模型3.2.1AutoRec模型的基本原理AutoRec模型是一个标准的自编码器,它的基本原理是利用协同过滤中的共现矩阵,完成物品向量或者用户向量的自编码。再利用自编码的结果得到用户对物品的预估评分,进而进行推荐排序。什么是自编码器?自编码器是指能够完成数据“自编码”的模型。无论是图像、音频,
- 基于DeepSeek × 数据治理如何落地?这套解决方案可参考!
Q:数据治理困局怎么破?3步落地DeepSeek实战方案导语:"每天处理10亿条数据,却找不到关键业务指标?""数据部门80%时间在'找数据-洗数据-背锅'的死循环?"这不是危言耸听——国内83%的企业正困在数据沼泽中(IDC最新数据)。今天揭秘某头部电商企业如何用DeepSeek方案,3个月实现数据治理自动化,让数据真正成为资产!一、数据治理的三大致命误区(90%企业正在踩坑)"工具万能论":买
- DeepFM算法原理及应用场景
DeepFM(DeepFactorizationMachine)是一种结合了因子分解机(FactorizationMachines,FM)和深度神经网络(DNN)的混合模型,主要用于处理高维稀疏数据(如推荐系统中的点击率预测)。其核心思想是同时捕捉低阶(线性)和高阶(非线性)特征交互。1.算法原理模型结构如下:FM部分:负责捕捉低阶特征交互(如一阶和二阶特征组合)。一阶项:线性特征权重。二阶项:通
- jvm原理和调优实战
故事很腻i
javajvmjava
一、JVM核心基础1.1JVM架构概述Java虚拟机(JavaVirtualMachine,JVM)是Java程序的运行核心,其核心架构包含四大模块:1.1.1类加载子系统功能:负责将class文件加载到JVM内存中,通过ClassLoader实现加载流程:加载:通过类的全限定名获取二进制字节流验证:确保字节流符合JVM规范准备:为类变量分配内存并设置初始值解析:将符号引用替换为直接引用初始化:执
- 大模型 AI智能体Coze知识库从使用到实战详解
非著名架构师
大模型知识文档人工智能Coze知识库
一、Coze知识库核心价值解析1.1知识库技术架构创新Coze知识库采用四层混合架构设计,在2025年大模型应用中展现出独特优势:存储层:支持向量数据库(Qdrant)+图数据库(Neo4j)双引擎处理层:集成PDF/PPT/Excel等23种文件解析器检索层:混合检索算法(BM25+稠密检索+语义路由)应用层:RAG(检索增强生成)优化接口与传统方案相比,查询准确率提升42%,特别擅长处理:专业
- DeepSeek-R1满血版:硅基流动API或本地部署
Mikhail_G
AIGC语言模型数据分析大数据python
大家好!想在手机上部署DeepSeek-R1满血版(671B)?我来手把手教你最靠谱的两种方式!满血版模型参数高达671亿,手机本地运行几乎不可能,但通过「云服务+手机App」的组合,你一样能在手机上丝滑使用真正的满血版DeepSeek-R1!一、推荐方案:通过SiliconFlow+Chatbox使用满血版(iOS/安卓均支持)这是目前最稳定、免费额度高、操作简单的方式,适合所有用户。原理:用S
- 【AI智能推荐系统】第二篇:深度学习在推荐系统中的架构设计与优化实践
DeepFaye
人工智能深度学习
第二篇:深度学习在推荐系统中的架构设计与优化实践提示语:“从Wide&Deep到Transformer,深度推荐模型如何突破性能瓶颈?本文将揭秘Netflix、淘宝都在用的深度学习推荐架构,手把手教你设计高精度推荐系统!”目录深度学习推荐系统的核心优势主流深度学习推荐架构解析2.1Wide&Deep模型2.2DeepFM与xDeepFM2.3神经协同过滤(NCF)2.4基于Transformer的
- Python Scrapy的爬虫中间件开发
AI天才研究院
pythonscrapy爬虫ai
PythonScrapy爬虫中间件开发:从原理到实战的深度解析关键词Scrapy中间件、爬虫扩展、请求响应处理、反爬绕过、中间件生命周期、钩子函数、分布式爬取摘要本文系统解析Scrapy爬虫中间件(SpiderMiddleware)的开发方法论,覆盖从基础概念到高级实践的全链路知识。通过第一性原理推导中间件的核心机制,结合层次化架构分析(理论→设计→实现→应用),提供生产级代码示例与可视化流程模型
- Node.js worker_threads:并发 vs 并行
红衣大叔
nodejs帮助文档node.js
一、核心结论Node.js的worker_threads模块实现的是并行计算,而非传统意义上的“并发”。其通过操作系统级线程实现多核CPU的并行执行,同时保留Node.js单线程事件循环的并发模型。二、关键概念解析1.并发(Concurrency)vs并行(Parallelism)并发:指系统同时处理多个任务的能力,但任务可能交替执行(如单核CPU通过时间片轮转)。Node.js主线程的事件循环是
- 【C#】MVVM基础知识及基本应用
Mike_Wuzy
c#
以下是一些关于C#中MVVM(Model-View-ViewModel)模式的基础知识:1.模型(Model)模型负责表示数据和业务逻辑,通常包括数据库访问、文件操作等。它不包含任何用户界面相关的代码。publicclassPerson{publicintId{get;set;}publicstringName{get;set;}publicDateTimeBirthDate{get;set;}/
- Assistant API 流式传输中的事件流原理细节
上有晨光
大模型Agent开发人工智能算法大模型OpenAIAgent
一、AssistantAPI流式传输事件流基础OpenAIAssistantAPI的流式输出在特定操作时会生成新事件,每个事件由event和data构成。data存放如大模型回复等关键数据,event则表明大模型的处理阶段,像运行、排队、完成等状态信息。二、事件流核心流程整体流程:从创建assistant对象、thread对象并追加message开启run状态(即start模式)起,到获取模型回复
- Assistant API 进阶应用方法介绍
上有晨光
大模型Agent开发人工智能算法大模型AgentOpenAI
一、课程回顾之前博客内容围绕OpenAIAssistantAPI展开,详细讲解了其基本原理、构建对话或代理的完整生命周期,以及Assistant、Thread、Message和Run这四个抽象概念之间的关系。在此基础上,搭建了用户与大模型对话的基础通路,不过这只是该API最基础的应用形式。二、AssistantAPI概述(一)优势与特点AssistantAPI在性能和易用性方面表现卓越,超越了市面
- 雪球结构定价与风险深度分析
wh3933
一、雪球结构简介雪球(Snowball)结构属于路径依赖型奇异衍生品,其结构相对复杂,但自2019年开始,雪球这种非保本型收益凭证受到市场上越来越多的关注,各类金融机构纷纷以不同角色参与其中,雪球在市场中的影响也逐渐增强。雪球型收益凭证实际是卖出了敲入结构的看跌期权,只要标的不发生大幅下跌,持有该收益凭证的时间越长,获得票息收益越多,类似于滚雪球一样,只要地面不出现非常大的坑洼,雪球就会越滚越大。
- Java+Python智能化云盘【Day3】
关沐吖
Java+PythonAi智能云盘项目开发专栏javapython开发语言
提示词工程Prompt简介:大模型必备Prompt提示词工程讲解什么是PromptEngineering提示词工程通过特定格式的文本输入引导AI模型生成期望输出的技术,明确地告诉模型你想要解决的问题或完成的任务也是大语言模型理解用户需求并生成相关、准确回答或内容的基础类比:给Java程序员的任务需求文档(越清晰明确,结果越符合预期)为什么需要学习?大模型就是你的员工,你可以有多个助手,OpenAI
- 2025年6月AIGC发展全景:技术轻量化、Agent产业化与伦理新挑战
Loving_enjoy
计算机学科论文创新点深度学习人工智能经验分享facebook
>**当一块消费级GPU能解高考数学题,当AI智能体接管医院诊断流程,我们正站在人机协作新纪元的门槛上**2025年6月,AIGC领域迎来关键转折点——**模型轻量化**让百亿参数算法飞入寻常设备,**多模态融合**打破文本与视觉的次元壁,而**Agent智能体**正从实验室概念蜕变为产业核心引擎。这场变革不仅重塑技术范式,更在重构商业逻辑与人类创造力边界。---###一、技术突破:垂直化、轻量化
- 【图像超分】论文复现:密集残差链接Transformer!DRCT的Pytorch源码复现,跑通超分源码,获得指标、模型复杂度、结果可视化,核心模块拆解与源码对应,注释详细!
十小大
超分辨率重建(理论+实战科研+应用)pytorch深度学习超分辨率重建图像处理计算机视觉pythontransformer
请先看【专栏介绍文章】:【超分辨率(Super-Resolution)】关于【超分辨率重建】专栏的相关说明,包含专栏简介、专栏亮点、适配人群、相关说明、阅读顺序、超分理解、实现流程、研究方向、论文代码数据集汇总等)完整代码和训练好的模型权重文件下载链接见本文底部,订阅专栏免费获取!本文亮点:跑通DRCT源码,获得与论文一致的PSNR/SSIM、Params、超分可视化结果,修正论文中FLOPs的计
- 500米无线图传WiFi模组,割草机无线传输技术,实时智能远程操控
飞睿科技
无线图传WiFi模组远距离WiFi方案无线传输模块无人机割草机远程控制模块无线模块
在繁忙的都市生活中,拥有一片绿意盎然的草坪,无疑是许多人向往的惬意时光。然而,传统的割草机操作繁琐,噪音大,且受限于线缆的束缚,使得这片绿意的维护变得不那么轻松。幸运的是,随着科技的不断发展,一种新型的割草机技术正在悄然改变这一现状——那就是搭载飞睿智能500米无线图传WiFi模组。一、技术创新:无线图传WiFi模组的新时代传统的割草机在使用过程中,需要通过线缆连接电源,这不仅限制了割草机的活动范
- DPDK网卡PMD驱动
风流网民
DPDKDPDK
以/home/user/dpdk-stable-18.11.11/drivers/net/i40e目录下的驱动为例源代码文件有#lsbasei40e_ethdev_vf.ci40e_logs.hi40e_regs.hi40e_rxtx_vec_altivec.ci40e_rxtx_vec_neon.ci40e_vf_representor.crte_pmd_i40e.ci40e_ethdev.ci
- 我国在AI、元宇宙、生成式AI赛道的竞争带来的投资机会
数据与人工智能律师
大数据区块链人工智能网络数据库
首席数据官高鹏律师团队编著中国在AI、元宇宙、生成式AI赛道的竞争已进入技术深化与商业落地并行的关键阶段,未来投资机会可围绕以下五大方向展开:一、基础设施与算力支撑1.云计算与混合云服务生成式AI对算力和云服务需求激增,联想集团等布局混合云的企业受益于企业数字化转型需求。IDC预测,到2025年,50%的企业将与生成式AI云提供商建立战略联系,云服务商需优化数据治理和成本控制能力。2.AI芯片与算
- 2025数字经济新政策解码:这五个黄金赛道,正在改写财富分配规则
数据与人工智能律师
人工智能大数据网络算法区块链
首席数据官高鹏律师团队创作,AI辅助一、政策东风下的财富重构:当免税清单变成“造富密码”2025年的春天,数字经济领域的政策“礼包”如同春雷炸响。从跨境电商的“阳光化新政”到智慧农业的“技术普惠”,从汽车零部件的“出海红利”到工业升级的“智能改造”,再到文旅餐饮的“消费重构”,五大行业正在经历一场财富分配的底层变革。这不是普通的政策调整,而是国家战略级的资源再分配——免税+补贴的组合拳,正在为先行
- 你以为的 () 只是函数调用?栈的战争:函数调用背后,编译器、链接器、CPU与黑客的四方博弈 解剖CPU、内存与安全交织的底层真相 了解函数调用的暗流:从C括号到CPU指令、栈帧攻防的生死时速
small_wh1te_coder
c++c算法c语言c++c算法面试
作者:smallcodewhite更新:2025.6.4号下午6点13分小引子:在软件这行当里混久了,你会发现一个现象:很多人能用各种高级语言、框架写出复杂的业务,但一遇到诡异的崩溃、性能瓶颈,或者需要和底层硬件打交道时,就抓瞎了。究其原因,是对计算机体系最基础的运行模型理解得不够透。上一篇我们聊了点数据在内存里的存放问题,有兄弟说不够劲,没触及灵魂。说得好。今天,咱们就来干一件有挑战性的事:把C
- SQL的各种连接查询
xieke90
UNION ALLUNION外连接内连接JOIN
一、内连接
概念:内连接就是使用比较运算符根据每个表共有的列的值匹配两个表中的行。
内连接(join 或者inner join )
SQL语法:
select * fron
- java编程思想--复用类
百合不是茶
java继承代理组合final类
复用类看着标题都不知道是什么,再加上java编程思想翻译的比价难懂,所以知道现在才看这本软件界的奇书
一:组合语法:就是将对象的引用放到新类中即可
代码:
package com.wj.reuse;
/**
*
* @author Administrator 组
- [开源与生态系统]国产CPU的生态系统
comsci
cpu
计算机要从娃娃抓起...而孩子最喜欢玩游戏....
要让国产CPU在国内市场形成自己的生态系统和产业链,国家和企业就不能够忘记游戏这个非常关键的环节....
投入一些资金和资源,人力和政策,让游
- JVM内存区域划分Eden Space、Survivor Space、Tenured Gen,Perm Gen解释
商人shang
jvm内存
jvm区域总体分两类,heap区和非heap区。heap区又分:Eden Space(伊甸园)、Survivor Space(幸存者区)、Tenured Gen(老年代-养老区)。 非heap区又分:Code Cache(代码缓存区)、Perm Gen(永久代)、Jvm Stack(java虚拟机栈)、Local Method Statck(本地方法栈)。
HotSpot虚拟机GC算法采用分代收
- 页面上调用 QQ
oloz
qq
<A href="tencent://message/?uin=707321921&Site=有事Q我&Menu=yes">
<img style="border:0px;" src=http://wpa.qq.com/pa?p=1:707321921:1></a>
- 一些问题
文强chu
问题
1.eclipse 导出 doc 出现“The Javadoc command does not exist.” javadoc command 选择 jdk/bin/javadoc.exe 2.tomcate 配置 web 项目 .....
SQL:3.mysql * 必须得放前面 否则 select&nbs
- 生活没有安全感
小桔子
生活孤独安全感
圈子好小,身边朋友没几个,交心的更是少之又少。在深圳,除了男朋友,没几个亲密的人。不知不觉男朋友成了唯一的依靠,毫不夸张的说,业余生活的全部。现在感情好,也很幸福的。但是说不准难免人心会变嘛,不发生什么大家都乐融融,发生什么很难处理。我想说如果不幸被分手(无论原因如何),生活难免变化很大,在深圳,我没交心的朋友。明
- php 基础语法
aichenglong
php 基本语法
1 .1 php变量必须以$开头
<?php
$a=” b”;
echo
?>
1 .2 php基本数据库类型 Integer float/double Boolean string
1 .3 复合数据类型 数组array和对象 object
1 .4 特殊数据类型 null 资源类型(resource) $co
- mybatis tools 配置详解
AILIKES
mybatis
MyBatis Generator中文文档
MyBatis Generator中文文档地址:
http://generator.sturgeon.mopaas.com/
该中文文档由于尽可能和原文内容一致,所以有些地方如果不熟悉,看中文版的文档的也会有一定的障碍,所以本章根据该中文文档以及实际应用,使用通俗的语言来讲解详细的配置。
本文使用Markdown进行编辑,但是博客显示效
- 继承与多态的探讨
百合不是茶
JAVA面向对象 继承 对象
继承 extends 多态
继承是面向对象最经常使用的特征之一:继承语法是通过继承发、基类的域和方法 //继承就是从现有的类中生成一个新的类,这个新类拥有现有类的所有extends是使用继承的关键字:
在A类中定义属性和方法;
class A{
//定义属性
int age;
//定义方法
public void go
- JS的undefined与null的实例
bijian1013
JavaScriptJavaScript
<form name="theform" id="theform">
</form>
<script language="javascript">
var a
alert(typeof(b)); //这里提示undefined
if(theform.datas
- TDD实践(一)
bijian1013
java敏捷TDD
一.TDD概述
TDD:测试驱动开发,它的基本思想就是在开发功能代码之前,先编写测试代码。也就是说在明确要开发某个功能后,首先思考如何对这个功能进行测试,并完成测试代码的编写,然后编写相关的代码满足这些测试用例。然后循环进行添加其他功能,直到完全部功能的开发。
- [Maven学习笔记十]Maven Profile与资源文件过滤器
bit1129
maven
什么是Maven Profile
Maven Profile的含义是针对编译打包环境和编译打包目的配置定制,可以在不同的环境上选择相应的配置,例如DB信息,可以根据是为开发环境编译打包,还是为生产环境编译打包,动态的选择正确的DB配置信息
Profile的激活机制
1.Profile可以手工激活,比如在Intellij Idea的Maven Project视图中可以选择一个P
- 【Hive八】Hive用户自定义生成表函数(UDTF)
bit1129
hive
1. 什么是UDTF
UDTF,是User Defined Table-Generating Functions,一眼看上去,貌似是用户自定义生成表函数,这个生成表不应该理解为生成了一个HQL Table, 貌似更应该理解为生成了类似关系表的二维行数据集
2. 如何实现UDTF
继承org.apache.hadoop.hive.ql.udf.generic
- tfs restful api 加auth 2.0认计
ronin47
目前思考如何给tfs的ngx-tfs api增加安全性。有如下两点:
一是基于客户端的ip设置。这个比较容易实现。
二是基于OAuth2.0认证,这个需要lua,实现起来相对于一来说,有些难度。
现在重点介绍第二种方法实现思路。
前言:我们使用Nginx的Lua中间件建立了OAuth2认证和授权层。如果你也有此打算,阅读下面的文档,实现自动化并获得收益。SeatGe
- jdk环境变量配置
byalias
javajdk
进行java开发,首先要安装jdk,安装了jdk后还要进行环境变量配置:
1、下载jdk(http://java.sun.com/javase/downloads/index.jsp),我下载的版本是:jdk-7u79-windows-x64.exe
2、安装jdk-7u79-windows-x64.exe
3、配置环境变量:右击"计算机"-->&quo
- 《代码大全》表驱动法-Table Driven Approach-2
bylijinnan
java
package com.ljn.base;
import java.io.BufferedReader;
import java.io.FileInputStream;
import java.io.InputStreamReader;
import java.util.ArrayList;
import java.util.Collections;
import java.uti
- SQL 数值四舍五入 小数点后保留2位
chicony
四舍五入
1.round() 函数是四舍五入用,第一个参数是我们要被操作的数据,第二个参数是设置我们四舍五入之后小数点后显示几位。
2.numeric 函数的2个参数,第一个表示数据长度,第二个参数表示小数点后位数。
例如:
select cast(round(12.5,2) as numeric(5,2))  
- c++运算符重载
CrazyMizzz
C++
一、加+,减-,乘*,除/ 的运算符重载
Rational operator*(const Rational &x) const{
return Rational(x.a * this->a);
}
在这里只写乘法的,加减除的写法类似
二、<<输出,>>输入的运算符重载
&nb
- hive DDL语法汇总
daizj
hive修改列DDL修改表
hive DDL语法汇总
1、对表重命名
hive> ALTER TABLE table_name RENAME TO new_table_name;
2、修改表备注
hive> ALTER TABLE table_name SET TBLPROPERTIES ('comment' = new_comm
- jbox使用说明
dcj3sjt126com
Web
参考网址:http://www.kudystudio.com/jbox/jbox-demo.html jBox v2.3 beta [
点击下载]
技术交流QQGroup:172543951 100521167
[2011-11-11] jBox v2.3 正式版
- [调整&修复] IE6下有iframe或页面有active、applet控件
- UISegmentedControl 开发笔记
dcj3sjt126com
// typedef NS_ENUM(NSInteger, UISegmentedControlStyle) {
// UISegmentedControlStylePlain, // large plain
&
- Slick生成表映射文件
ekian
scala
Scala添加SLICK进行数据库操作,需在sbt文件上添加slick-codegen包
"com.typesafe.slick" %% "slick-codegen" % slickVersion
因为我是连接SQL Server数据库,还需添加slick-extensions,jtds包
"com.typesa
- ES-TEST
gengzg
test
package com.MarkNum;
import java.io.IOException;
import java.util.Date;
import java.util.HashMap;
import java.util.Map;
import javax.servlet.ServletException;
import javax.servlet.annotation
- 为何外键不再推荐使用
hugh.wang
mysqlDB
表的关联,是一种逻辑关系,并不需要进行物理上的“硬关联”,而且你所期望的关联,其实只是其数据上存在一定的联系而已,而这种联系实际上是在设计之初就定义好的固有逻辑。
在业务代码中实现的时候,只要按照设计之初的这种固有关联逻辑来处理数据即可,并不需要在数据库层面进行“硬关联”,因为在数据库层面通过使用外键的方式进行“硬关联”,会带来很多额外的资源消耗来进行一致性和完整性校验,即使很多时候我们并不
- 领域驱动设计
julyflame
VODAO设计模式DTOpo
概念:
VO(View Object):视图对象,用于展示层,它的作用是把某个指定页面(或组件)的所有数据封装起来。
DTO(Data Transfer Object):数据传输对象,这个概念来源于J2EE的设计模式,原来的目的是为了EJB的分布式应用提供粗粒度的数据实体,以减少分布式调用的次数,从而提高分布式调用的性能和降低网络负载,但在这里,我泛指用于展示层与服务层之间的数据传输对
- 单例设计模式
hm4123660
javaSingleton单例设计模式懒汉式饿汉式
单例模式是一种常用的软件设计模式。在它的核心结构中只包含一个被称为单例类的特殊类。通过单例模式可以保证系统中一个类只有一个实例而且该实例易于外界访问,从而方便对实例个数的控制并节约系统源。如果希望在系统中某个类的对象只能存在一个,单例模式是最好的解决方案。
&nb
- logback
zhb8015
loglogback
一、logback的介绍
Logback是由log4j创始人设计的又一个开源日志组件。logback当前分成三个模块:logback-core,logback- classic和logback-access。logback-core是其它两个模块的基础模块。logback-classic是log4j的一个 改良版本。此外logback-class
- 整合Kafka到Spark Streaming——代码示例和挑战
Stark_Summer
sparkstormzookeeperPARALLELISMprocessing
作者Michael G. Noll是瑞士的一位工程师和研究员,效力于Verisign,是Verisign实验室的大规模数据分析基础设施(基础Hadoop)的技术主管。本文,Michael详细的演示了如何将Kafka整合到Spark Streaming中。 期间, Michael还提到了将Kafka整合到 Spark Streaming中的一些现状,非常值得阅读,虽然有一些信息在Spark 1.2版
- spring-master-slave-commondao
王新春
DAOspringdataSourceslavemaster
互联网的web项目,都有个特点:请求的并发量高,其中请求最耗时的db操作,又是系统优化的重中之重。
为此,往往搭建 db的 一主多从库的 数据库架构。作为web的DAO层,要保证针对主库进行写操作,对多个从库进行读操作。当然在一些请求中,为了避免主从复制的延迟导致的数据不一致性,部分的读操作也要到主库上。(这种需求一般通过业务垂直分开,比如下单业务的代码所部署的机器,读去应该也要从主库读取数