YOLOv8参数解释

参数路径:ultralytics/ultralytics/cfg/default.yaml

model	传入的model.yaml文件或者model.pt文件,用于构建网络和初始化,不同点在于只传入yaml文件的话参数会随机初始化
data	训练数据集的配置yaml文件
epochs	训练轮次,默认100
patience	早停训练观察的轮次,默认50,如果50轮没有精度提升,模型会直接停止训练,为了不终止训练直接调成10000
batch	训练批次,默认16
imgsz	训练图片大小,默认640
save	保存训练过程和训练权重,默认开启
save_period	训练过程中每x个轮次保存一次训练模型,默认-1(不开启)
cache	是否采用ram进行数据载入,设置True会加快训练速度,但是这个参数非常吃内存,一般服务器才会设置
device	要运行的设备,即cuda device =0或Device =0,1,2,3或device = cpu
workers	载入数据的线程数。windows一般为4,服务器可以大点,windows上这个参数可能会导致线程报错,发现有关线程报错,可以尝试减少这个参数,这个参数默认为8,大部分都是需要减少的(Windows上不降低数量的方法已经上传到B站工房系列改进的资源中,请家人们及时查看!)
project	项目文件夹的名,默认为runs
name	用于保存训练文件夹名,默认exp,依次累加
exist_ok	是否覆盖现有保存文件夹,默认Flase
pretrained	是否加载预训练权重,默认Flase
optimizer	优化器选择(也是种改进方式!),默认SGD,可选[SGD、Adam、AdamW、RMSProP]
verbose	是否打印详细输出
seed	随机种子,用于复现模型,默认0
deterministic	设置为True,保证实验的可复现性
single_cls	将多类数据训练为单类,把所有数据当作单类训练,默认Flase
image_weights	使用加权图像选择进行训练,默认Flase
rect	使用矩形训练,和矩形推理同理,默认False
cos_lr	使用余弦学习率调度,默认Flase
close_mosaic	最后x个轮次禁用马赛克增强,默认10
resume	断点训练,默认Flase
lr0	初始化学习率,默认0.01
lrf	最终学习率,默认0.01
label_smoothing	标签平滑参数,默认0.0
dropout	使用dropout正则化(仅对训练进行分类),默认0.0

你可能感兴趣的:(YOLOv8训练,YOLO)