LeetCode解法汇总746. 使用最小花费爬楼梯

目录链接:

力扣编程题-解法汇总_分享+记录-CSDN博客

GitHub同步刷题项目:

https://github.com/September26/java-algorithms

原题链接:力扣(LeetCode)官网 - 全球极客挚爱的技术成长平台


描述:

给你一个整数数组 cost ,其中 cost[i] 是从楼梯第 i 个台阶向上爬需要支付的费用。一旦你支付此费用,即可选择向上爬一个或者两个台阶。

你可以选择从下标为 0 或下标为 1 的台阶开始爬楼梯。

请你计算并返回达到楼梯顶部的最低花费。

示例 1:

输入:cost = [10,15,20]
输出:15
解释:你将从下标为 1 的台阶开始。
- 支付 15 ,向上爬两个台阶,到达楼梯顶部。
总花费为 15 。

示例 2:

输入:cost = [1,100,1,1,1,100,1,1,100,1]
输出:6
解释:你将从下标为 0 的台阶开始。
- 支付 1 ,向上爬两个台阶,到达下标为 2 的台阶。
- 支付 1 ,向上爬两个台阶,到达下标为 4 的台阶。
- 支付 1 ,向上爬两个台阶,到达下标为 6 的台阶。
- 支付 1 ,向上爬一个台阶,到达下标为 7 的台阶。
- 支付 1 ,向上爬两个台阶,到达下标为 9 的台阶。
- 支付 1 ,向上爬一个台阶,到达楼梯顶部。
总花费为 6 。

提示:

  • 2 <= cost.length <= 1000
  • 0 <= cost[i] <= 999

解题思路:

典型动态规划的思路,dp[i]代表到达i位置的最低成本。

代码:

class Solution {
public:
    int minCostClimbingStairs(vector &cost)
    {
        vector dp(cost.size() + 1);
        dp[0] = 0;
        dp[1] = 0;
        for (int i = 2; i <= cost.size(); i++)
        {
            dp[i] = min(dp[i - 2] + cost[i - 2], dp[i - 1] + cost[i - 1]);
        }
        return dp[cost.size()];
    }
};

你可能感兴趣的:(编程题,leetcode,算法,职场和发展)